Skip to main content
Log in

Chaotic behaviour of the map xω(x, f)

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

Let K(2) be the class of compact subsets of the Cantor space 2, furnished with the Hausdorff metric. Let fC(2). We study the map ω f : 2K(2) defined as ω f (x) = ω(x, f), the ω-limit set of x under f. Unlike the case of n-dimensional manifolds, n ≥ 1, we show that ω f is continuous for the generic self-map f of the Cantor space, even though the set of functions for which ω f is everywhere discontinuous on a subsystem is dense in C(2). The relationships between the continuity of ω f and some forms of chaos are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin E., Auslander J., Berg K., When is a transitive map chaotic?, In: Convergence in Ergodic Theory and Probability, Columbus, June, 1993, Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996

    Google Scholar 

  2. Banks J., Brooks J., Cairns G., Davis G., Stacey P., On Devaney’s definition of chaos, Amer. Math. Monthly, 1992, 99(4), 332–334

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernardes N.C. Jr., Darji U.B., Graph theoretic structure of maps of the Cantor space, Adv. Math., 2012, 231(3–4), 1655–1680

    Article  MATH  MathSciNet  Google Scholar 

  4. Blanchard F., Topological chaos: what does this mean?, J. Difference Equ. Appl., 2009, 15(1), 23–46

    Article  MATH  MathSciNet  Google Scholar 

  5. Blanchard F., Glasner E., Kolyada S., Maass A., On Li-Yorke pairs, J. Reine Angew. Math., 2002, 547, 51–68

    MATH  MathSciNet  Google Scholar 

  6. Blanchard F., Huang W., Entropy sets, weakly mixing sets and entropy capacity, Discrete Contin. Dyn. Syst., 2008, 20(2), 275–311

    MATH  MathSciNet  Google Scholar 

  7. Block L.S., Coppel W.A., Dynamics in One Dimension, Lecture Notes in Math., 1513, Springer, Berlin, 1992

    MATH  Google Scholar 

  8. Blokh A., Bruckner A.M., Humke P.D., Smítal J., The space of ω-limit sets of a continuous map of the interval, Trans. Amer. Math. Soc., 1996, 348(4), 1357–1372

    Article  MATH  MathSciNet  Google Scholar 

  9. Bowen R., Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 1971, 153, 401–414

    Article  MATH  MathSciNet  Google Scholar 

  10. Brin M., Stuck G., Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002

    Book  MATH  Google Scholar 

  11. Bruckner A.M., Ceder J., Chaos in terms of the map x ↦ ω(x, f), Pacific J. Math., 1992, 156(1), 63–96

    Article  MATH  MathSciNet  Google Scholar 

  12. D’Aniello E., Darji U.B., Chaos among self-maps of the Cantor space, J. Math. Anal. Appl., 2011, 381(2), 781–788

    Article  MATH  MathSciNet  Google Scholar 

  13. D’Aniello E., Darji U.B., Steele T.H., Ubiquity of odometers in topological dynamical systems, Topology Appl., 2008, 156(2), 240–245

    Article  MATH  MathSciNet  Google Scholar 

  14. Devaney R.L., An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley Stud. Nonlinearity, Addison-Wesley, Redwood City, 1989

    MATH  Google Scholar 

  15. Dinaburg E.I., The relation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR, 1970, 190, 19–22 (in Russian)

    MathSciNet  Google Scholar 

  16. Glasner E., Weiss B., Sensitive dependence on initial conditions, Nonlinearity, 1993, 6(6), 1067–1075

    Article  MATH  MathSciNet  Google Scholar 

  17. Grillenberger C., Constructions of strictly ergodic systems I. Given entropy, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1973, 25(4), 323–334

    Article  MATH  MathSciNet  Google Scholar 

  18. Hochman M., Genericity in topological dynamics, Ergodic Theory Dynam. Systems, 2008, 28(1), 125–165

    Article  MATH  MathSciNet  Google Scholar 

  19. Huang W., Ye X., Devaney’s chaos or 2-scattering implies Li-Yorke’s chaos, Topology Appl., 2002, 117(3), 259–272

    Article  MATH  MathSciNet  Google Scholar 

  20. Huang W., Ye X., An explicit scattering, non-weakly mixing example and weak disjointness, Nonlinearity, 2002, 15(3), 849–862

    Article  MATH  MathSciNet  Google Scholar 

  21. Koscielniak P., On the genericity of chaos, Topology Appl., 2007, 154(9), 1951–1955

    Article  MATH  MathSciNet  Google Scholar 

  22. Li T.Y., Yorke J.A., Period three implies chaos, Amer. Math. Monthly, 1975, 82(10), 985–992

    Article  MATH  MathSciNet  Google Scholar 

  23. Mai J., Devaney’s chaos implies existence of s-scrambled sets, Proc. Amer. Math. Soc., 2004, 132(9), 2761–2767

    Article  MATH  MathSciNet  Google Scholar 

  24. Oxtoby J.C., Measure and Category, Grad. Texts in Math., 2, Springer, New York-Heidelberg-Berlin, 1971

    Book  MATH  Google Scholar 

  25. Weiss B., Topological transitivity and ergodic measures, Math. Systems Theory, 1971, 5, 71–75

    Article  MATH  MathSciNet  Google Scholar 

  26. Yano K., A remark on the topological entropy of homeomorphisms, Invent. Math., 1980, 59(3), 215–220

    Article  MATH  MathSciNet  Google Scholar 

  27. Ye X., Zang R., On sensitive sets in topological dynamics, Nonlinearity, 2008, 21(7), 1601–1620

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma D’Aniello.

About this article

Cite this article

D’Aniello, E., Steele, T.H. Chaotic behaviour of the map xω(x, f). centr.eur.j.math. 12, 584–592 (2014). https://doi.org/10.2478/s11533-013-0360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-013-0360-3

MSC

Keywords

Navigation