Advertisement

Central European Journal of Mathematics

, Volume 12, Issue 2, pp 212–228 | Cite as

Stable cohomology of alternating groups

  • Fedor BogomolovEmail author
  • Christian Böhning
Research Article

Abstract

We determine the stable cohomology groups (\(H_S^i \left( {{{\mathfrak{A}_n ,\mathbb{Z}} \mathord{\left/ {\vphantom {{\mathfrak{A}_n ,\mathbb{Z}} {p\mathbb{Z}}}} \right. \kern-\nulldelimiterspace} {p\mathbb{Z}}}} \right)\) of the alternating groups \(\mathfrak{A}_n\) for all integers n and i, and all odd primes p.

Keywords

Stable cohomology Alternating groups Cohomological invariants 

MSC

14E08 14F43 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adem A., Milgram R.J., Cohomology of Finite Groups, 2nd ed., Grundlehren Math. Wiss., 309, Springer, Berlin, 2004CrossRefzbMATHGoogle Scholar
  2. [2]
    Bogomolov F.A., Stable cohomology of groups and algebraic varieties, Russian Acad. Sci. Sb. Math., 1993, 76(1), 1–21MathSciNetCrossRefGoogle Scholar
  3. [3]
    Bogomolov F., Stable cohomology of finite and profinite groups, In: Algebraic Groups, Göttingen, June 27–July 13, 2005, Universitätsverlag Göttingen, Göttingen, 2007, 19–49Google Scholar
  4. [4]
    Bogomolov F., Böhning Chr., Isoclinism and stable cohomology of wreath products, In: Birational Geometry, Rational Curves, and Arithmetic, Simons Symposium ”Geometry Over Non-Closed Fields”, St. John, February 26–March 3, 2012, Springer, New York, 2013, 57–76Google Scholar
  5. [5]
    Bogomolov F., Petrov T., Unramified cohomology of alternating groups, Cent. Eur. J. Math., 2011, 9(5), 936–948MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Bogomolov F., Petrov T., Tschinkel Yu., Unramified cohomology of finite groups of Lie type, In: Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., 282, Birkhäuser, Boston, 2010, 55–73CrossRefGoogle Scholar
  7. [7]
    Colliot-Thélène J.-L., Birational invariants, purity and the Gersten conjecture, In: K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, Santa Barbara, July 6–24, 1992, Proc. Sympos. Pure Math., 58(1), American Mathematical Society, Providence, 1995, 1–64Google Scholar
  8. [8]
    Colliot-Thélène J.-L., Ojanguren M., Variétés unirationelles non rationelles: au-delà de l’exemple d’Artin et Mumford, Invent. Math., 1989, 97(1), 141–158MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Garibaldi S., Merkurjev A., Serre J.-P., Cohomological invariants in Galois cohomology, Univ. Lecture Ser., 28, American Mathematical Society, Providence, 2003zbMATHGoogle Scholar
  10. [10]
    Kahn B., Relatively unramified elements in cycle modules, J. K-Theory, 2011, 7(3), 409–427MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Kahn B., Sujatha R., Motivic cohomology and unramified cohomology of quadrics, J. Eur. Math. Soc. (JEMS), 2000, 2(2), 145–177MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Mann B.M., The cohomology of the alternating groups, Michigan Math. J., 1985, 32(3), 267–277MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Mùi H., Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 1975, 22(3), 319–369MathSciNetzbMATHGoogle Scholar
  14. [14]
    Nguyen T.K.N., Modules de Cycles et Classes Non Ramifiées sur un Espace Classifiant, PhD thesis, Université Paris Diderot, 2010Google Scholar
  15. [15]
    Nguyen T.K.N., Classes non ramifiées sur un espace classifiant, C. R. Math. Acad. Sci. Paris, 2011, 349(5–6), 233–237MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Ore O., Theory of monomial groups, Trans. Amer. Math. Soc., 1942, 51(1), 15–64MathSciNetCrossRefGoogle Scholar
  17. [17]
    Serre J.-P., Galois Cohomology, Springer Monogr. Math., Springer, Berlin, 2002Google Scholar
  18. [18]
    Steenrod N.E., Cohomology Operations, Ann. of Math. Stud., 50, Princeton University Press, Princeton, 1962zbMATHGoogle Scholar
  19. [19]
    Tezuka M., Yagita N., The image of the map from group cohomology to Galois cohomology, Trans. Amer. Math. Soc., 2011, 363(8), 4475–4503MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Courant Institute of Mathematical SciencesNew YorkUSA
  2. 2.Laboratory of Algebraic GeometryGU-HSEMoscowRussia
  3. 3.Fachbereich Mathematik der Universität HamburgHamburgGermany

Personalised recommendations