Skip to main content
Log in

The geometry of the space of Cauchy data of nonlinear PDEs

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

First-order jet bundles can be put at the foundations of the modern geometric approach to nonlinear PDEs, since higher-order jet bundles can be seen as constrained iterated jet bundles. The definition of first-order jet bundles can be given in many equivalent ways — for instance, by means of Grassmann bundles. In this paper we generalize it by means of flag bundles, and develop the corresponding theory for higher-oder and infinite-order jet bundles. We show that this is a natural geometric framework for the space of Cauchy data for nonlinear PDEs. As an example, we derive a general notion of transversality conditions in the Calculus of Variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bocharov A.V., Chetverikov V.N., Duzhin S.V., Khor’kova N.G., Krasil’shchik I.S., Samokhin A.V., Torkhov Yu.N., Verbovetsky A.M., Vinogradov A.M., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Transl. Math. Monogr., 182, American Mathematical Society, Providence, 1999

    Google Scholar 

  2. Bott R., Tu L.W., Differential Forms in Algebraic Topology, Grad. Texts in Math., 82, Springer, New York-Berlin, 1982

    Book  MATH  Google Scholar 

  3. van Brunt B., The Calculus of Variations, Universitext, Springer, New York, 2004

    Google Scholar 

  4. Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A., Exterior Differential Systems, Math. Sci. Res. Inst. Publ., 18, Springer, New York, 1991

    Book  MATH  Google Scholar 

  5. Giaquinta M., Hildebrandt S., Calculus of Variations. I, Grundlehren Math. Wiss., 310, Springer, Berlin, 1996

    Google Scholar 

  6. Kijowski J., A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity, Gen. Relativity Gravitation, 1997, 29(3), 307–343

    Article  MathSciNet  MATH  Google Scholar 

  7. Krasil’shchik J., Verbovetsky A., Geometry of jet spaces and integrable systems, J. Geom. Phys., 2011, 61(9), 1633–1674

    Article  MathSciNet  MATH  Google Scholar 

  8. Krupka D., Of the structure of the Euler mapping, Arch. Math. (Brno), 1974, 10(1), 55–61

    MathSciNet  Google Scholar 

  9. Michor P.W., Manifolds of Differentiable Mappings, Shiva Mathematics Series, 3, Shiva Publishing, Nantwich, 1980

    MATH  Google Scholar 

  10. Moreno G., A C-spectral sequence associated with free boundary variational problems, In: Geometry, Integrability and Quantization, Avangard Prima, Sofia, 2010, 146–156

    Google Scholar 

  11. Vinogradov A.M., Many-valued solutions, and a principle for the classification of nonlinear differential equations, Dokl. Akad. Nauk SSSR, 1973, 210, 11–14 (in Russian)

    MathSciNet  Google Scholar 

  12. Vinogradov A.M., The C-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory, J. Math. Anal. Appl., 1984, 100(1), 1–40

    Article  MathSciNet  MATH  Google Scholar 

  13. Vinogradov A.M., The C-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory, J. Math. Anal. Appl., 1984, 100(1), 41–129

    Article  MathSciNet  MATH  Google Scholar 

  14. Vinogradov A.M., Geometric singularities of solutions of nonlinear partial differential equations, In: Differential Geometry and its Applications, Brno, 1986, Math. Appl. (East European Ser.), 27, Reidel, Dordrecht, 1987, 359–379

    Google Scholar 

  15. Vinogradov A.M., Cohomological Analysis of Partial Differential Equations and Secondary Calculus, Transl. Math. Monogr., 204, American Mathematical Society, Providence, 2001

    Google Scholar 

  16. Vinogradov A.M., Moreno G., Domains in infinite jet spaces: the C-spectral sequence, Dokl. Math., 2007, 75(2), 204–207

    Article  MathSciNet  MATH  Google Scholar 

  17. Vitagliano L., Secondary calculus and the covariant phase space, J. Geom. Phys., 2009, 59(4), 426–447

    Article  MathSciNet  MATH  Google Scholar 

  18. Vitagliano L., private communication, 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Moreno.

About this article

Cite this article

Moreno, G. The geometry of the space of Cauchy data of nonlinear PDEs. centr.eur.j.math. 11, 1960–1981 (2013). https://doi.org/10.2478/s11533-013-0292-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-013-0292-y

MSC

Keywords

Navigation