Skip to main content
Log in

Spaces of measurable functions

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

For a metrizable space X and a finite measure space (Ω, \(\mathfrak{M}\), µ), the space M µ(X) of all equivalence classes (under the relation of equality almost everywhere mod µ) of \(\mathfrak{M}\)-measurable functions from Ω to X, whose images are separable, equipped with the topology of convergence in measure, and some of its subspaces are studied. In particular, it is shown that M µ(X) is homeomorphic to a Hilbert space provided µ is (nonzero) nonatomic and X is completely metrizable and has more than one point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Banakh T.O., Topology of spaces of probability measures. I. The functors P τ and \(\hat P\), Mat. Stud., 1995, 5, 65–87 (in Russian), English translation available at http://arxiv.org/abs/1112.6161

    MathSciNet  MATH  Google Scholar 

  2. Banakh T.O., Topology of spaces of probability measures. II. Barycenters of Radon probability measures and the metrization of the functors P τ and \(\hat P\), Mat. Stud., 1995, 5, 88–106 (in Russian), English translation available at http://arxiv.org/abs/1206.1727

    MathSciNet  MATH  Google Scholar 

  3. Banakh T., Bessaga Cz., On linear operators extending [pseudo]metrics, Bull. Polish Acad. Sci. Math., 2000, 48(1), 35–49

    MathSciNet  MATH  Google Scholar 

  4. Banakh T.O., Radul T.N., Topology of spaces of probability measures, Sb. Math., 1997, 188(7), 973–995

    Article  MathSciNet  MATH  Google Scholar 

  5. Banakh T., Zarichnyy I., Topological groups and convex sets homeomorphic to non-separable Hilbert spaces, Cent. Eur. J. Math., 2008, 6(1), 77–86

    Article  MathSciNet  MATH  Google Scholar 

  6. Bessaga Cz., Pełczyński A., On spaces of measurable functions, Studia Math., 1972, 44(6), 597–615

    MathSciNet  MATH  Google Scholar 

  7. Chapman T.A., Deficiency in infinite-dimensional manifolds, General Topology and Appl., 1971, 1(3), 263–272

    Article  MathSciNet  MATH  Google Scholar 

  8. Dobrowolski T., Toruńczyk H., Separable complete ANR’s admitting a group structure are Hilbert manifolds, Topology Appl., 1981, 12(3), 229–235

    Article  MathSciNet  MATH  Google Scholar 

  9. Halmos P.R., Measure Theory, Van Nostrand, New York, 1950

    MATH  Google Scholar 

  10. Hartman S., Mycielski J., On the imbedding of topological groups into connected topological groups, Colloq. Math., 1958, 5, 167–169

    MathSciNet  MATH  Google Scholar 

  11. Kuratowski K., Mostowski A., Set Theory, 2nd ed., Stud. Logic Found. Math., 86, North-Holland/PWN, Amsterdam-New York-Oxford/Warsaw, 1976

    MATH  Google Scholar 

  12. Maharam D., On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A., 1942, 28, 108–111

    Article  MathSciNet  MATH  Google Scholar 

  13. Niemiec P., Functor of continuation in Hilbert cube and Hilbert space, preprint available at http://arxiv.org/abs/1107.1386

  14. Rudin W., Real and Complex Analysis, McGraw-Hill, New York-Toronto, 1966

    MATH  Google Scholar 

  15. Takesaki M., Theory of Operator Algebras, I, Encyclopaedia Math. Sci., 124, Springer, Berlin, 2002

    MATH  Google Scholar 

  16. Toruńczyk H., Characterization of infinite-dimensional manifolds, In: Proceedings of the International Conference on Geometric Topology, Warsaw, 1978, PWN, Warsaw, 1980, 431–437

    Google Scholar 

  17. Toruńczyk H., Characterizing Hilbert space topology, Fund. Math., 1981, 111(3), 247–262

    MathSciNet  MATH  Google Scholar 

  18. Toruńczyk H., A correction of two papers concerning Hilbert manifolds: “Concerning locally homotopy negligible sets and characterization of l 2-manifolds” [Fund. Math. 101 (1978), no. 2, 93–110; MR 80g:57019] and “Characterizing Hilbert space topology” [ibid. 111 (1981), no. 3, 247–262; MR 82i:57016], Fund. Math., 1985, 125, 89–93

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Niemiec.

About this article

Cite this article

Niemiec, P. Spaces of measurable functions. centr.eur.j.math. 11, 1304–1316 (2013). https://doi.org/10.2478/s11533-013-0236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-013-0236-6

MSC

Keywords

Navigation