Skip to main content
Log in

Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

There is a circle of problems concerning the exponential generating function of harmonic numbers. The main results come from Cvijovic, Dattoli, Gosper and Srivastava. In this paper, we extend some of them. Namely, we give the exponential generating function of hyperharmonic numbers indexed by arithmetic progressions; in the sum several combinatorial numbers (like Stirling and Bell numbers) and the hypergeometric function appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner M., Combinatorial Theory, Classics Math., Springer, Berlin, 1997

    Book  Google Scholar 

  2. Andrews G.E., Askey R., Roy R., Special Functions, Encyclopedia Math. Appl., 71, Cambridge University Press, Cambridge, 2001

    Google Scholar 

  3. Benjamin A.T., Gaebler D., Gaebler R., A combinatorial approach to hyperharmonic numbers, Integers, 2003, 3, #A15

  4. Borwein D., Borwein J.M., Girgensohn R., Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc., 1995, 38(2), 277–294

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyadzhiev K.N., Exponential polynomials, Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals, Abstr. Appl. Anal., 2009, #168672

  6. Broder A.Z., The r-Stirling numbers, Discrete Math., 1984, 49(3), 241–259

    Article  MathSciNet  MATH  Google Scholar 

  7. Charalambides Ch.A., Combinatorial Methods in Discrete Distributions, Wiley Ser. Probab. Stat., Wiley-Interscience, Hoboken, 2005

    Book  Google Scholar 

  8. Cheon G.-S., Jung J.-H., r-Whitney numbers of Dowling lattices, Discrete Math., 2012, 312(15), 2337–2348

    Article  MathSciNet  MATH  Google Scholar 

  9. Chowla S., Nathanson M.B., Mellin’s formula and some combinatorial identities, Monatsh. Math., 1976, 81(4), 261–265

    Article  MathSciNet  MATH  Google Scholar 

  10. Comtet L., Advanced Combinatorics, Reidel, Dordrecht, 2010

    Google Scholar 

  11. Conway J.H., Guy R.K., The Book of Numbers, Copernicus, New York, 1996

    Book  MATH  Google Scholar 

  12. Corcino R.B., The (r; β)-Stirling numbers, Mindanao Forum, 1999, 14(2), 91–100

    Google Scholar 

  13. Corcino R.B., Corcino C.B., Aldema R., Asymptotic normality of the (r; β)-Stirling numbers, Ars. Combin., 2006, 81, 81–96

    MathSciNet  MATH  Google Scholar 

  14. Corcino R.B., Montero M.B., Corcino C.B., On generalized Bell numbers for complex argument, Util. Math., 2012, 88, 267–279

    MathSciNet  MATH  Google Scholar 

  15. Crandall R.E., Buhler J.P., On the evaluation of Euler sums, Experiment. Math., 1994, 3(4), 275–285

    Article  MathSciNet  MATH  Google Scholar 

  16. Cvijovic D., The Dattoli-Srivastava conjectures concerning generating functions involving the harmonic numbers, Appl. Math. Comput., 2010, 215(11), 4040–4043

    Article  MathSciNet  MATH  Google Scholar 

  17. Dattoli G., Srivastava H.M., A note on harmonic numbers, umbral calculus and generating functions, Appl. Math. Lett., 2008, 21(7), 686–693

    Article  MathSciNet  MATH  Google Scholar 

  18. Dobinski G., Summirung der Reihe Σn m/n! für m = 1,2, 3,…, Archiv der Mathematik und Physik, 1877, 61, 333–336

    MATH  Google Scholar 

  19. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher Transcendental Functions, 1, Robert E. Krieger, Melbourne, 1981

    Google Scholar 

  20. Flajolet P., Salvy B., Euler sums and contour integral representations, Experiment. Math., 1998, 7(1), 15–35

    Article  MathSciNet  MATH  Google Scholar 

  21. Gradshteyn I.S., Ryzhik I.M., Table of Integrals, Series, and Products, 7th ed., Academic Press, Amsterdam, 2007

    MATH  Google Scholar 

  22. Graham R.L., Knuth D.E., Patashnik O., Concrete Mathematics, Addison-Wesley, Reading, 1994

    MATH  Google Scholar 

  23. Hansen E.R., A Table of Series and Products, Prentice-Hall, Englewood Cliffs, 1975

    MATH  Google Scholar 

  24. Mező I., Analytic extension of hyperharmonic numbers, Online J. Anal. Comb., 2009, 4, #1

    Google Scholar 

  25. Mező I., A new formula for the Bernoulli polynomials, Results Math., 2010, 58(3–4), 329–335

    Article  MathSciNet  Google Scholar 

  26. Mező I., Dil A., Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence, Cent. Eur. J. Math., 2009, 7(2), 310–321

    Article  MathSciNet  Google Scholar 

  27. Mező I., Dil A., Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, 2010, 130(2), 360–369

    Article  MathSciNet  Google Scholar 

  28. Pitman J., Some probabilistic aspects of set partitions, Amer. Math. Monthly, 1997, 104(3), 201–209

    Article  MathSciNet  MATH  Google Scholar 

  29. Rucinski A., Voigt B., A local limit theorem for generalized Stirling numbers, Rev. Roumaine Math. Pures Appl., 1990, 35(2), 161–172

    MathSciNet  MATH  Google Scholar 

  30. Sofo A., Srivastava H.M., Identities for the harmonic numbers and binomial coefficients, Ramanujan J., 2011, 25(1), 93–113

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Mező.

About this article

Cite this article

Mező, I. Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions. centr.eur.j.math. 11, 931–939 (2013). https://doi.org/10.2478/s11533-013-0214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-013-0214-z

MSC

Keywords

Navigation