Skip to main content
Log in

Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

An averaging method for the second-order approximation of the values of the gradient of an arbitrary smooth function u = u(x 1, x 2) at the vertices of a regular triangulation T h composed both of rectangles and triangles is presented. The method assumes that only the interpolant Π h [u] of u in the finite element space of the linear triangular and bilinear rectangular finite elements from T h is known. A complete analysis of this method is an extension of the complete analysis concerning the finite element spaces of linear triangular elements from [Dalík J., Averaging of directional derivatives in vertices of nonobtuse regular triangulations, Numer. Math., 2010, 116(4), 619–644]. The second-order approximation of the gradient is extended from the vertices to the whole domain and applied to the a posteriori error estimates of the finite element solutions of the planar elliptic boundary-value problems of second order. Numerical illustrations of the accuracy of the averaging method and of the quality of the a posteriori error estimates are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M., Oden J.T., A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York, 2000

    Google Scholar 

  2. Babuška I., Rheinboldt W.C., A-posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg., 1978, 12(10), 1597–1615

    Article  MATH  Google Scholar 

  3. Babuška I., Strouboulis T., The Finite Element Method and its Reliability, Numer. Math. Sci. Comput., Clarendon Press, Oxford University Press, New York, 2001

    Google Scholar 

  4. Chen C., Huang Y., High Accuracy Theory of Finite Element Methods, Hunan Science and Technology Press, Changsha, 1995 (in Chinese)

    Google Scholar 

  5. Dalík J., Averaging of directional derivatives in vertices of nonobtuse regular triangulations, Numer. Math., 2010, 116(4), 619–644

    Article  MathSciNet  MATH  Google Scholar 

  6. Dalík J., Approximations of the partial derivatives by averaging, Cent. Eur. J. Math., 10(1), 2012, 44–54

    Article  MathSciNet  MATH  Google Scholar 

  7. Haug E.J., Choi K.K., Komkov V., Design sensitivity analysis of structural systems, Math. Sci. Eng., 177, Academic Press, Orlando, 1986

    MATH  Google Scholar 

  8. Hlaváček I., Křížek M., Pištora V., How to recover the gradient of linear elements on nonuniform triangulations, Appl. Math., 1996, 41(4), 241–267

    MathSciNet  MATH  Google Scholar 

  9. Křížek M., Neittaanmäki P., Superconvergence phenomenon in the finite element method arising from averaging gradients, Numer. Math., 1984, 45(1), 105–116

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin Q., Yan N., The Construction and Analysis of High Efficiency Finite Elements, Hebei University Press, Hunan, 1996 (in Chinese)

    Google Scholar 

  11. Verfürth R., A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner Skr. Numer., Wiley-Teubner, Stuttgart, 1996

    Google Scholar 

  12. Wahlbin L.B., Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Math., 1605, Springer, Berlin, 1995

    MATH  Google Scholar 

  13. Zienkiewicz O.C., Cheung Y.K., The Finite Element Method in Structural and Continuum Mechanics, European civil engineering series, McGraw-Hill, London-New York, 1967

    Google Scholar 

  14. Zienkiewicz O.C., Zhu J.Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 1992, 33(7), 1331–1364

    Article  MathSciNet  MATH  Google Scholar 

  15. Zlámal M., Superconvergence and reduced integration in the finite element method, Math. Comput., 1978, 32(143), 663–685

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Dalík.

About this article

Cite this article

Dalík, J., Valenta, V. Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements. centr.eur.j.math. 11, 597–608 (2013). https://doi.org/10.2478/s11533-012-0159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-012-0159-7

MSC

Keywords

Navigation