Abstract
We explain the appearance of Rogers-Ramanujan series inside the tensor product of two basic A (2)2 -modules, previously discovered by the first author in [Feingold A.J., Some applications of vertex operators to Kac-Moody algebras, In: Vertex Operators in Mathematics and Physics, Berkeley, November 10–17, 1983, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985, 185–206]. The key new ingredients are (5,6)Virasoro minimal models and twisted modules for the Zamolodchikov W 3-algebra.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Adamovic D., Perše O., On coset vertex algebras with central charge 1, Math. Commun., 2010, 15(1), 143–157
Arakawa T., Representation theory of W-algebras, Invent. Math., 2007, 169(2), 219–320
Bais F.A., Bouwknegt P., Surridge M., Schoutens K., Coset construction for extended Virasoro algebras, Nuclear Phys. B, 1988, 304(2), 371–391
Borcea J., Dualities, Affine Vertex Operator Algebras, and Geometry of Complex Polynomials, PhD thesis, Lund University, 1998
Bouwknegt P., Schoutens K., W-symmetry in conformal field theory, Phys. Rep., 1993, 223(4), 183–276
Bytsko A., Fring A., Factorized combinations of Virasoro characters, Comm. Math. Phys., 2000, 209(1), 179–205
Capparelli S., A combinatorial proof of a partition identity related to the level 3 representations of a twisted affine Lie algebra, Comm. Algebra, 1995, 23(8), 2959–2969
Dong C., Li H., Mason G., Twisted representations of vertex operator algebras and associative algebras, Internat. Math. Res. Notices, 1998, 8, 389–397
Dong C., Li H., Mason G., Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys., 2000, 214(1), 1–56
Dong C., Wang Q., On C 2-cofiniteness of parafermion vertex operator algebras, J. Algebra, 2011, 328, 420–431
Feingold A.J., Some applications of vertex operators to Kac-Moody algebras, In: Vertex Operators in Mathematics and Physics, Berkeley, November 10–17, 1983, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985, 185–206
Frenkel E., Kac V., Wakimoto M., Characters and fusion rules for W-algebras via quantized Drinfel’d-Sokolov reduction, Comm. Math. Phys., 1992, 147(2), 295–328
Frenkel I.B., Huang Y.-Z., Lepowsky J., On Axiomatic Approaches to Vertex Operator Algebras and Modules, Mem. Amer. Math. Soc., 104(494), American Mathematical Society, Providence, 1993
Iohara K., Koga Y., Representation Theory of the Virasoro Algebra, Springer Monogr. Math., Springer, London, 2011
Kac V.G., Wakimoto M., Modular and conformal invariance constraints in representation theory of affine algebras, Adv. in Math., 1988, 70(2), 156–236
Kitazume M., Miyamoto M., Yamada H., Ternary codes and vertex operator algebras, J. Algebra, 2000, 223(2), 379–395
Li H.-S., Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, In: Moonshine, the Monster, and Related Topics, South Hadley, June 18–23, 1994, Contemp. Math., 193, American Mathematical Society, Providence, 1996, 203–236
Mauriello C., Branching rule decomposition of irreducible level-1 E (1)6 -modules with respect to the affine subalgebra F (1)4 , PhD thesis, State University of New York at Binghamton, 2012 (in preparation)
Milas A., Modular forms and almost linear dependence of graded dimensions, In: Lie Algebras, Vertex Operator Algebras and their Applications, Raleigh, May 17–21, 2005, Contemp. Math., 442, American Mathematical Society, Providence, 2007, 411–424
Miyamoto M., 3-state Potts model and automorphisms of vertex operator algebras of order 3, J. Algebra, 2001, 239(1), 56–76
Mukhin E., Factorization of alternating sums of Virasoro characters, J. Combin. Theory Ser. A, 2007, 114(7), 1165–1181
Wang W., Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices, 1993, 7, 197–211
Xie C.F., Structure of the level two standard modules for the affine Lie algebra A (2)2 , Comm. Algebra, 1990, 18(8), 2397–2401
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Feingold, A.J., Milas, A. The 3-state Potts model and Rogers-Ramanujan series. centr.eur.j.math. 11, 1–16 (2013). https://doi.org/10.2478/s11533-012-0086-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11533-012-0086-7