Skip to main content
Log in

The 3-state Potts model and Rogers-Ramanujan series

Central European Journal of Mathematics

Cite this article

Abstract

We explain the appearance of Rogers-Ramanujan series inside the tensor product of two basic A (2)2 -modules, previously discovered by the first author in [Feingold A.J., Some applications of vertex operators to Kac-Moody algebras, In: Vertex Operators in Mathematics and Physics, Berkeley, November 10–17, 1983, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985, 185–206]. The key new ingredients are (5,6)Virasoro minimal models and twisted modules for the Zamolodchikov W 3-algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamovic D., Perše O., On coset vertex algebras with central charge 1, Math. Commun., 2010, 15(1), 143–157

    MathSciNet  MATH  Google Scholar 

  2. Arakawa T., Representation theory of W-algebras, Invent. Math., 2007, 169(2), 219–320

    Article  MathSciNet  MATH  Google Scholar 

  3. Bais F.A., Bouwknegt P., Surridge M., Schoutens K., Coset construction for extended Virasoro algebras, Nuclear Phys. B, 1988, 304(2), 371–391

    Article  MathSciNet  MATH  Google Scholar 

  4. Borcea J., Dualities, Affine Vertex Operator Algebras, and Geometry of Complex Polynomials, PhD thesis, Lund University, 1998

  5. Bouwknegt P., Schoutens K., W-symmetry in conformal field theory, Phys. Rep., 1993, 223(4), 183–276

    Article  MathSciNet  Google Scholar 

  6. Bytsko A., Fring A., Factorized combinations of Virasoro characters, Comm. Math. Phys., 2000, 209(1), 179–205

    Article  MathSciNet  MATH  Google Scholar 

  7. Capparelli S., A combinatorial proof of a partition identity related to the level 3 representations of a twisted affine Lie algebra, Comm. Algebra, 1995, 23(8), 2959–2969

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong C., Li H., Mason G., Twisted representations of vertex operator algebras and associative algebras, Internat. Math. Res. Notices, 1998, 8, 389–397

    Article  MathSciNet  Google Scholar 

  9. Dong C., Li H., Mason G., Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys., 2000, 214(1), 1–56

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong C., Wang Q., On C 2-cofiniteness of parafermion vertex operator algebras, J. Algebra, 2011, 328, 420–431

    Article  MathSciNet  MATH  Google Scholar 

  11. Feingold A.J., Some applications of vertex operators to Kac-Moody algebras, In: Vertex Operators in Mathematics and Physics, Berkeley, November 10–17, 1983, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985, 185–206

    Chapter  Google Scholar 

  12. Frenkel E., Kac V., Wakimoto M., Characters and fusion rules for W-algebras via quantized Drinfel’d-Sokolov reduction, Comm. Math. Phys., 1992, 147(2), 295–328

    Article  MathSciNet  MATH  Google Scholar 

  13. Frenkel I.B., Huang Y.-Z., Lepowsky J., On Axiomatic Approaches to Vertex Operator Algebras and Modules, Mem. Amer. Math. Soc., 104(494), American Mathematical Society, Providence, 1993

  14. Iohara K., Koga Y., Representation Theory of the Virasoro Algebra, Springer Monogr. Math., Springer, London, 2011

    Book  MATH  Google Scholar 

  15. Kac V.G., Wakimoto M., Modular and conformal invariance constraints in representation theory of affine algebras, Adv. in Math., 1988, 70(2), 156–236

    Article  MathSciNet  MATH  Google Scholar 

  16. Kitazume M., Miyamoto M., Yamada H., Ternary codes and vertex operator algebras, J. Algebra, 2000, 223(2), 379–395

    Article  MathSciNet  MATH  Google Scholar 

  17. Li H.-S., Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, In: Moonshine, the Monster, and Related Topics, South Hadley, June 18–23, 1994, Contemp. Math., 193, American Mathematical Society, Providence, 1996, 203–236

    Chapter  Google Scholar 

  18. Mauriello C., Branching rule decomposition of irreducible level-1 E (1)6 -modules with respect to the affine subalgebra F (1)4 , PhD thesis, State University of New York at Binghamton, 2012 (in preparation)

  19. Milas A., Modular forms and almost linear dependence of graded dimensions, In: Lie Algebras, Vertex Operator Algebras and their Applications, Raleigh, May 17–21, 2005, Contemp. Math., 442, American Mathematical Society, Providence, 2007, 411–424

    Chapter  Google Scholar 

  20. Miyamoto M., 3-state Potts model and automorphisms of vertex operator algebras of order 3, J. Algebra, 2001, 239(1), 56–76

    Article  MathSciNet  MATH  Google Scholar 

  21. Mukhin E., Factorization of alternating sums of Virasoro characters, J. Combin. Theory Ser. A, 2007, 114(7), 1165–1181

    Article  MathSciNet  Google Scholar 

  22. Wang W., Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices, 1993, 7, 197–211

    Article  Google Scholar 

  23. Xie C.F., Structure of the level two standard modules for the affine Lie algebra A (2)2 , Comm. Algebra, 1990, 18(8), 2397–2401

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex J. Feingold.

About this article

Cite this article

Feingold, A.J., Milas, A. The 3-state Potts model and Rogers-Ramanujan series. centr.eur.j.math. 11, 1–16 (2013). https://doi.org/10.2478/s11533-012-0086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-012-0086-7

MSC

Keywords

Navigation