Central European Journal of Mathematics

, Volume 10, Issue 4, pp 1422–1441 | Cite as

Λ-modules and holomorphic Lie algebroid connections

Research Article
  • 78 Downloads

Abstract

Let X be a complex smooth projective variety, and G a locally free sheaf on X. We show that there is a one-to-one correspondence between pairs (Λ, Ξ), where Λ is a sheaf of almost polynomial filtered algebras over X satisfying Simpson’s axioms and \( \equiv :Gr\Lambda \to Sym \bullet _{\mathcal{O}_X } \mathcal{G}\) is an isomorphism, and pairs (L, Σ), where L is a holomorphic Lie algebroid structure on \(\mathcal{G}\) and Σ is a class in F1H2(L, ℂ), the first Hodge filtration piece of the second cohomology of L.

As an application, we construct moduli spaces of semistable flat L-connections for any holomorphic Lie algebroid L. Particular examples of these are given by generalized holomorphic bundles for any generalized complex structure associated to a holomorphic Poisson manifold.

Keywords

Holomorphic Lie algebroids Filtered algebras Universal enveloping algebra Lie algebroid connections Moduli spaces of flat connections Generalized holomorphic bundles 

MSC

14D20 16S30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Atiyah M.F., Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., 1957, 85, 181–207MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Beĭlinson A., Bernstein J., A proof of Jantzen conjectures, In: I.M. Gel’fand Seminar, Adv. Soviet Math., 16(1), American Mathematical Society, Providence, 1993, 1–50Google Scholar
  3. [3]
    Bruzzo U., Rubtsov V.N., Cohomology of skew-holomorphic Lie algebroids, Teoret. Mat. Fiz., 2010, 165(3), 426–439 (in Russian)CrossRefGoogle Scholar
  4. [4]
    Calaque D., Dolgushev V., Halbout G., Formality theorems for Hochschild chains in the Lie algebroid setting, J. Reine Angew. Math., 2007, 612, 81–127MathSciNetMATHGoogle Scholar
  5. [5]
    Calaque D., Van den Bergh M., Hochschild cohomology and Atiyah classes, Adv. Math., 2010, 224(5), 1839–1889MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Deligne P., Équations Différentielles à Points Singuliers Réguliers, Lecture Notes in Math., 163, Springer, Berlin-New York, 1970MATHGoogle Scholar
  7. [7]
    Esnault H., Viehweg E., Logarithmic de Rham complexes and vanishing theorems, Invent. Math., 1986, 86(1), 161–194MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Fernandes R.L., Lie algebroids, holonomy and characteristic classes, Adv. Math., 2002, 170(1), 119–179MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Griffiths P., Harris J., Principles of Algebraic Geometry, Pure Appl. Math., John Wiley & Sons, New York, 1978MATHGoogle Scholar
  10. [10]
    Gualtieri M., Generalized complex geometry, Ann. of Math., 2011, 174(1), 75–123MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Hitchin N., Generalized holomorphic bundles and the B-field action, J. Geom. Phys., 2011, 61(1), 352–362MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Huebschmann J., Extensions of Lie-Rinehart algebras and the Chern-Weil construction, In: Higher Homotopy Structures in Topology and Mathematical Physics, Poughkeepsie, June 13–15, 1996, Contemp. Math., 227, Amerrican Mathematical Society, Providence, 1999, 145–176CrossRefGoogle Scholar
  13. [13]
    Huebschmann J., Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras, In: Poisson Geometry, Warsaw, August 3–15, 1998, Banach Center Publ., 51, Polish Acadamy of Sciences, Warsaw, 2000, 87–102Google Scholar
  14. [14]
    Huybrechts D., Lehn M., The Geometry of Moduli Spaces of Sheaves, 2nd ed., Cambridge Math. Lib., Cambridge University Press, Cambridge, 2010MATHCrossRefGoogle Scholar
  15. [15]
    Laurent-Gengoux C., Stiénon M., Xu P., Holomorphic Poisson manifolds and holomorphic Lie algebroids, Int. Math. Res. Not. IMRN, 2008, #088Google Scholar
  16. [16]
    Mackenzie K.C.H., General Theory of Lie Groupoids and Lie Algebroids, London Math. Soc. Lecture Note Ser., 213, Cambridge University Press, Cambridge, 2005MATHGoogle Scholar
  17. [17]
    Nest R., Tsygan B., Deformation of symplectic Lie algebroids, deformation of holomorphic symplectic structures, and index theorems, Asian J. Math., 2001, 5(4), 599–635MathSciNetMATHGoogle Scholar
  18. [18]
    Simpson C.T., Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math., 1994, 79, 47–129MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Simpson C., The Hodge filtration on nonabelian cohomology, In: Algebraic Geometry, Santa Cruz, July 9–29, 1995, Proc. Sympos. Pure Math., 62(2), American Mathematical, Society, Providence, 1997, 217–281Google Scholar
  20. [20]
    Sridharan R., Filtered algebras and representations of Lie algebras, Trans. Amer. Math. Soc., 1961, 100, 530–550 1MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Mathematical Physics SectorSISSATriesteItaly
  2. 2.Laboratoire Paul PainlevéUniversité Lille 1, Cité ScientifiqueVilleneuve D’Ascq CedexFrance

Personalised recommendations