Skip to main content

ACM bundles, quintic threefolds and counting problems

Abstract

We review some facts about rank two arithmetically Cohen-Macaulay bundles on quintic threefolds. In particular, we separate them into seventeen natural classes, only fourteen of which can appear on a general quintic. We discuss some enumerative problems arising from these.

This is a preview of subscription content, access via your institution.

References

  1. Adler A., Ramanan S., Moduli of Abelian Varieties, Lecture Notes in Math., 1644, Springer, Berlin, 1996

    Google Scholar 

  2. Beauville A., Determinantal hypersurfaces, Michigan Math. J., 2000, 48, 39–64

    Article  MathSciNet  MATH  Google Scholar 

  3. Bershadsky M., Cecotti S., Ooguri H., Vafa C., Holomorphic anomalies in topological field theories, In: Mirror Symmetry, II, AMS/IP Stud. Adv. Math., 1, Amererical Mathematical Society, Providence, 1997, 655–682

    Google Scholar 

  4. Chiantini L., Faenzi D., Rank 2 arithmetically Cohen-Macaulay bundles on a general quintic surface, Math. Nachr., 2009, 282(12), 1691–1708

    Article  MathSciNet  MATH  Google Scholar 

  5. Chiantini L., Madonna C., ACM bundles on a general quintic threefold, Matematiche (Catania), 2000, 55(2), 239–258

    MathSciNet  MATH  Google Scholar 

  6. Clemens H., Kley H.P., On an example of Voisin, Michigan Math. J., 2000, 48, 93–119

    Article  MathSciNet  MATH  Google Scholar 

  7. Ellingsrud G., Strømme S.A., Bott’s formula and enumerative geometry, J. Amer. Math. Soc., 1996, 9(1), 175–193

    Article  MathSciNet  MATH  Google Scholar 

  8. Grayson D.R., Stillman M.E., Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/

  9. Johnsen T., Kleiman S.L., Rational curves of degree at most 9 on a general quintic threefold, Comm. Algebra, 1996, 24(8), 2721–2753

    MathSciNet  MATH  Google Scholar 

  10. Katz S., On the finiteness of rational curves on quintic threefolds, Compositio Math., 1986, 60(2), 151–162

    MathSciNet  MATH  Google Scholar 

  11. Kley H.P., Rigid curves in complete intersection Calabi-Yau threefolds, Compositio Math., 2000, 123(2), 185–208

    Article  MathSciNet  MATH  Google Scholar 

  12. Knutsen A.L., On isolated smooth curves of low genera in Calabi-Yau complete intersection threefolds, preprint available at http://arxiv.org/abs/1009.4419

  13. Kontsevich M., Enumeration of rational curves via torus actions, In: The Moduli Space of Curves, Texel Island, April 1994, Progr. Math., 129, Birkhäuser, Boston, 1995, 335–368

    Chapter  Google Scholar 

  14. Madonna C., A splitting criterion for rank 2 vector bundles on hypersurfaces in ℙ4, Rend. Sem. Mat. Univ. Politec. Torino, 1998, 56(2), 43–54

    MathSciNet  MATH  Google Scholar 

  15. Mohan Kumar N., Rao A.P., Ravindra G.V., Arithmetically Cohen-Macaulay bundles on three dimensional hypersurfaces, Int. Math. Res. Not. IMRN, 2007, 8, #rnm025

  16. Mohan Kumar N., Rao A.P., Ravindra G.V., Arithmetically Cohen-Macaulay bundles on hypersurfaces, Comment. Math. Helv., 2007, 82(4), 829–843

    Article  MathSciNet  MATH  Google Scholar 

  17. Okonek Ch., Notes on varieties of codimension 3 in ℙN, Manuscripta Math., 1994, 84, 421–442

    Article  MathSciNet  MATH  Google Scholar 

  18. Thomas R.P., A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations, J. Differential Geom., 2000, 54(2), 367–438

    MathSciNet  MATH  Google Scholar 

  19. Vainsencher I., Avritzer D., Compactifying the space of elliptic quartic curves, In: Complex Projective Geometry, Trieste, June 19–24, 1989/Bergen, July 3–6, 1989, London Math. Soc. Lecture Note Ser., 179, Cambridge University Press, Cambridge, 1992, 47–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mohan Kumar.

About this article

Cite this article

Mohan Kumar, N., Rao, A.P. ACM bundles, quintic threefolds and counting problems. centr.eur.j.math. 10, 1380–1392 (2012). https://doi.org/10.2478/s11533-012-0017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-012-0017-7

MSC

Keywords