Antonelli F., Scarlatti S., Pricing options under stochastic volatility: a power series approach, Finance Stoch., 2009, 13(2), 269–303
MathSciNet
MATH
Article
Google Scholar
Barjaktarevic J.P., Rebonato R., Approximate solutions for the SABR model: improving on the Hagan expansion, Talk at ICBI Global Derivatives Trading and Risk Management Conference, 2010
Benhamou E., Gobet E., Miri M., Expansion formulas for European options in a local volatility model, Int. J. Theor. Appl. Finance, 2010, 13(4), 603–634
MathSciNet
MATH
Article
Google Scholar
Berestycki H., Busca J., Florent I., Computing the implied volatility in stochastic volatility models, Comm. Pure Appl. Math., 2004, 57(10), 1352–1373
MathSciNet
MATH
Article
Google Scholar
Capriotti L., The exponent expansion: an effective approximation of transition probabilities of diffusion processes and pricing kernels of financial derivatives, Int. J. Theor. Appl. Finance, 2006, 9(7), 1179–1199
MathSciNet
MATH
Article
Google Scholar
Cheng W., Costanzino N., Liechty J., Mazzucato A., Nistor V., Closed-form asymptotics and numerical approximations of 1D parabolic equations with applications to option pricing, SIAM J. Financial Math., 2011, 2, 901–934
Article
Google Scholar
Constantinescu R., Costanzino N., Mazzucato A.L., Nistor V., Approximate solutions to second order parabolic equations I: analytic estimates, J. Math. Phys., 2010, 51(10), #103502
Corielli F., Foschi P., Pascucci A., Parametrix approximation of diffusion transition densities, SIAM J. Financial Math., 2010, 1, 833–867
MathSciNet
Article
Google Scholar
Cox J.C., Notes on option pricing I: constant elasticity of variance diffusion, Stanford University, Stanford, 1975, manuscript
Google Scholar
Davydov D., Linetsky V., Pricing and hedging path-dependent options under the CEV process, Management Sci., 2001, 47(7), 949–965
Article
Google Scholar
Delbaen F., Shirakawa H., A note on option pricing for the constant elasticity of variance model, Financial Engineering and the Japanese Markets, 2002, 9(2), 85–99
MATH
Google Scholar
Doust P., No arbitrage SABR, 2010, manuscript
Ekström E., Tysk J., Boundary behaviour of densities for non-negative diffusions, preprint available at www.math.uu.se/~johant/pq.pdf
Foschi P., Pagliarani S., Pascucci A., Black-Scholes formulae for Asian options in local volatility models, preprint available at http://ssrn.com/paper=1898992
Fouque J.-P., Papanicolaou G., Sircar R., Solna K., Singular perturbations in option pricing, SIAM J. Appl. Math., 2003, 63(5), 1648–1665
MathSciNet
MATH
Article
Google Scholar
Gatheral J., Hsu E.P., Laurence P., Ouyang C., Wang T.-H., Asymptotics of implied volatility in local volatility models, Math. Finance (in press), DOI: 10.1111/j.1467-9965.2010.00472.x
Gatheral J., Wang T.-H., The heat-kernel most-likely-path approximation, preprint available at http://ssrn.com/paper=1663318
Hagan P.S., Kumar D., Lesniewski A.S., Woodward D.E., Managing smile risk, Wilmott Magazine, 2002, September, 84–108
Hagan P., Lesniewski A., Woodward D., Probability distribution in the SABR model of stochastic volatility, 2005, preprint available at www.lesniewski.us/papers/working/ProbDistrForSABR.pdf
Hagan P.S., Woodward D.E., Equivalent Black volatilities, Appl. Math. Finance, 1999, 6(3), 147–157
MATH
Article
Google Scholar
Henry-Labordère P., A geometric approach to the asymptotics of implied volatility, In: Frontiers in Quantitative Finance, Wiley Finance Ser., John Wiley & Sons, Hoboken, 2008, chapter 4, 89–128
Google Scholar
Henry-Labordère P., Analysis, Geometry, and Modeling in Finance, Chapman Hall/CRC Financ. Math. Ser., CRC Press, Boca Raton, 2009
Google Scholar
Heston S.L., Loewenstein M., Willard G.A., Options and bubbles, Review of Financial Studies, 2007, 20(2), 359–390
Article
Google Scholar
Howison S., Matched asymptotic expansions in financial engineering, J. Engrg. Math., 2005, 53(3–4), 385–406
MathSciNet
MATH
Article
Google Scholar
Janson S., Tysk J., Feynman-Kac formulas for Black-Scholes-type operators, Bull. London Math. Soc., 2006, 38(2), 269–282
MathSciNet
MATH
Article
Google Scholar
Kristensen D., Mele A., Adding and subtracting Black-Scholes: a new approach to approximating derivative prices in continuous-time models, Journal of Financial Economics, 2011, 102(2), 390–415
Article
Google Scholar
Lesniewski A., Swaption smiles via the WKB method, Mathematical Finance Seminar, Courant Institute of Mathematical Sciences, 2002
Lindsay A., Brecher D., Results on the CEV process, past and present, preprint available at http://ssrn.com/paper=1567864
Pagliarani S., Pascucci A., Riga C., Expansion formulae for local Lévy models, preprint available at http://ssrn.com/paper=1937149
Pascucci A., PDE and Martingale Methods in Option Pricing, Bocconi Springer Ser., 2, Springer, Milan, 2011
Google Scholar
Paulot L., Asymptotic implied volatility at the second order with application to the SABR model, preprint available at http://ssrn.com/paper=1413649
Shaw W.T., Modelling Financial Derivatives with Mathematica, Cambridge University Press, Cambridge, 1998
MATH
Google Scholar
Taylor S., Perturbation and Symmetry Techniques Applied to Finance, PhD thesis, Frankfurt School of Finance & Management, Bankakademie HfB, 2011
Google Scholar
Whalley A.E., Wilmott P., An asymptotic analysis of an optimal hedging model for option pricing with transaction costs, Math. Finance, 1997, 7(3), 307–324
MathSciNet
MATH
Article
Google Scholar
Widdicks M., Duck P.W., Andricopoulos A.D., Newton D.P., The Black-Scholes equation revisited: asymptotic expansions and singular perturbations, Math. Finance, 2005, 15(2), 373–391
MathSciNet
MATH
Article
Google Scholar