Skip to main content
Log in

Real-linear isometries between function algebras

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

Let A and B be uniformly closed function algebras on locally compact Hausdorff spaces with Choquet boundaries Ch A and ChB, respectively. We prove that if T: AB is a surjective real-linear isometry, then there exist a continuous function κ: ChB → {z ∈ ℂ: |z| = 1}, a (possibly empty) closed and open subset K of ChB and a homeomorphism φ: ChB → ChA such that T(f) = κ(fφ) on K and \(T\left( f \right) = \kappa \overline {fo\phi }\) on ChB \ K for all fA. Such a representation holds for surjective real-linear isometries between (not necessarily uniformly closed) function algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araujo J., Font J.J., On Šilov boundaries for subspaces of continuous functions, Topology Appl., 1997, 77(2), 79–85

    Article  MathSciNet  MATH  Google Scholar 

  2. Burckel R.B., Characterizations of C(X) among its Subalgebras, Lecture Notes in Pure and Appl. Math., 6, Marcel Dekker, New York, 1972

    Google Scholar 

  3. Ellis A.J., Real characterizations of function algebras amongst function spaces, Bull. Lond. Math. Soc., 1990, 22(4), 381–385

    Article  MATH  Google Scholar 

  4. Fleming R.J., Jamison J.E., Isometries on Banach Spaces: Function Spaces, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 129, Chapman & Hall/CRC, Boca Raton, 2003

    Google Scholar 

  5. Fleming R.J., Jamison J.E., Isometries on Banach Spaces. Vol. 2: Vector-Valued Function Spaces, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 138, Chapman & Hall/CRC, Boca Raton, 2008

    Google Scholar 

  6. Hatori O., Hirasawa G., Miura T., Additively spectral-radius preserving surjections between unital semisimple commutative Banach algebras, Cent. Eur. J. Math., 2010, 8(3), 597–601

    Article  MathSciNet  MATH  Google Scholar 

  7. Hatori O., Lambert S., Luttman A., Miura T., Tonev T., Yates R., Spectral preservers in commutative Banach algebras, In: Function Spaces in Modern Analysis, Contemp. Math., 547, American Mathematical Society, Providence (in press)

  8. de Leeuw K., Rudin W., Wermer J., The isometries of some function spaces, Proc. Amer. Math. Soc., 1960, 11(5), 694–698

    MathSciNet  Google Scholar 

  9. Mazur S., Ulam S., Sur les transformations isométriques d’espaces vectoriels normés, C. R. Acad. Sci. Paris, 1932, 194, 946–948

    Google Scholar 

  10. Nagasawa M., Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kōdai Math. Sem. Rep., 1959, 11(4), 182–188

    Article  MathSciNet  MATH  Google Scholar 

  11. Rao N.V., Roy A.K., Multiplicatively spectrum-preserving maps of function algebras. II, Proc. Edinb. Math. Soc., 2005, 48(1), 219–229

    Article  MathSciNet  MATH  Google Scholar 

  12. Rao N.V., Tonev T.V., Toneva E.T., Uniform algebra isomorphisms and peripheral spectra, In: Topological Algebras and Applications, Contemp. Math., 427, American Mathematical Society, Providence, 2007, 401–416

    Google Scholar 

  13. Tonev T., Toneva E., Composition operators between subsets of function algebras, In: Function Spaces in Modern Analysis, Contemp. Math., 547, American Mathematical Society, Providence (in press)

  14. Tonev T., Yates R., Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl., 2009, 357(1), 45–53

    Article  MathSciNet  MATH  Google Scholar 

  15. Väisälä J., A proof of the Mazur-Ulam theorem, Amer. Math. Monthly, 2003, 110(7), 633–635

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Miura.

About this article

Cite this article

Miura, T. Real-linear isometries between function algebras. centr.eur.j.math. 9, 778–788 (2011). https://doi.org/10.2478/s11533-011-0044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-011-0044-9

MSC

Keywords

Navigation