Central European Journal of Mathematics

, Volume 7, Issue 2, pp 230–248 | Cite as

On phase segregation in nonlocal two-particle Hartree systems

Research Article

Abstract

We prove the phase segregation phenomenon to occur in the ground state solutions of an interacting system of two self-coupled repulsive Hartree equations for large nonlinear and nonlocal interactions. A self-consistent numerical investigation visualizes the approach to this segregated regime.

Keywords

Coupled Hartree equations Quantum many-body problem Hartree approximation Ground states solutions Phase segregation Finite elements Self-consistent iteration 

MSC

35Q40 35J60 35J50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ablowitz M.J., Prinari B., Trubatch A.D., Discrete and continuous nonlinear Schrödinger systems, London Mathematical Society, Lecture Note Series 302, Cambridge University Press, 2004Google Scholar
  2. [2]
    Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A., Observation of Bose-Einstein condensation in a diluite atomic vapor, Science, 1995, 269, 198–201CrossRefGoogle Scholar
  3. [3]
    Aschbacher W.H., Fully discrete Galerkin schemes for the nonlinear and nonlocal Hartree equation, Electron. J. Diff. Eqns., 2009, 12, 1–22Google Scholar
  4. [4]
    Aschbacher W.H., Fröhlich J., Graf G.M., Schnee K., Troyer M., Symmetry breaking regime in the nonlinear Hartree equation, J. Math. Phys., 2002, 43, 3879–3891MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Bao W., Ground states and dynamics of multicomponent Bose-Einstein condensates, Multiscale Model. Simul., 2004, 2, 210–236MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Caliari M., Squassina M., Location and phase segregation of ground and excited states for 2D Gross-Pitaevskii systems, Dyn. Partial Differ. Equ., 2008, 5, 117–137MATHMathSciNetGoogle Scholar
  7. [7]
    Conti M., Terracini S., Verzini G., Nehari’s problem and competing species systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2002, 19, 871–888MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S., Theory of trapped Bose-condensed gases, Rev. Mod. Phys., 1999, 71, 463–512CrossRefGoogle Scholar
  9. [9]
    Erdös L., Schlein B., Yau H.-T., Rigorous derivation of the Gross-Pitaevskii equation, Phys. Rev. Lett., 2007, 98, 040404Google Scholar
  10. [10]
    Esry B.D., Greene C.H., Burke J.P., Bohn J.L., Hartree-Fock theory for double condensates, Phys. Rev. Lett., 1997, 78, 3594–3597CrossRefGoogle Scholar
  11. [11]
    Gross E.P., Structure of a quantized vortex in boson systems, Nuovo Cimento, 1961, 20, 454–477MATHCrossRefGoogle Scholar
  12. [12]
    Lieb E.H., Seiringer R., Yngvason J., Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A, 2000, 61, 043602Google Scholar
  13. [13]
    Myatt C.J., Burt E.A., Ghrist R.W., Cornell E.A., Wieman C.E., Production of two overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett., 1997, 78, 586–589CrossRefGoogle Scholar
  14. [14]
    Öhberg P., Stenholm S., Hartree-Fock treatment of two-component Bose-Einstein condensate, Phys. Rev. A, 1998, 57, 1272–1279CrossRefGoogle Scholar
  15. [15]
    Pitaevskii L.P., Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, 1961, 13, 451–454MathSciNetGoogle Scholar
  16. [16]
    Riboli F., Modugno M., Topology of the ground state of two interacting Bose-Einstein condensates, Phys. Rev. A, 2002, 65, 063614Google Scholar
  17. [17]
    Rüegg Ch., Cavadini N., Furrer A., Güdel H-U., Krämer K., Mutka H., Wildes A., Habicht K., Vorderwisch P., Bose-Einstein condensation of the triplet states in the magnetic insulator TlCuCl3, Nature, 2003, 423,(6935):62–65CrossRefGoogle Scholar
  18. [18]
    Timmermans E., Phase separation of Bose-Einstein condensates, Phys. Rev. Lett., 1998, 81, 5718–5721CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Zentrum MathematikTechnische Universität MünchenGarchingGermany
  2. 2.Department of Computer ScienceUniversity of VeronaVeronaItaly

Personalised recommendations