Skip to main content
Log in

Power variation of multiple fractional integrals

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

We study the convergence in probability of the normalized q-variation of the multiple fractional multiparameter integral processes

$$\begin{gathered} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} _r = (t_1 ,...,t_r ) \to I_r^H (f_r )_{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} _r } : = \int_{[0,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} _r ]} {f_r (s_1 ,...,s_r )dB_{s_1 }^H ...dB_{s_r }^H } , \hfill \\ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} _r = (t_1 ,...,t_r ) \to I_r^{H, - } (f_r )_{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} _r } : = \int_{[0,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} _r ]} {f_r (s_1 ,...,s_r )dS_{s_1 }^H ...dS_{s_r }^H } , \hfill \\ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} _2 = (t_1 ,t_2 ) \to I_r^H (g)_{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} _2 } : = \int_{[0,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} _2 ]} {g(s_1 ,s_2 )dB_{s_1 }^{H,1} dB_{s_2 }^{H,2} } , \hfill \\ \end{gathered} $$

where f r, g are continuous deterministic functions, B H (resp. S H) is a fractional (resp. a sub-fractional) Brownian motion with Hurst parameter H > 1/2 and B H,1, B H,1 are independent fractional Brownian motions with Hurst parameter H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Alòs and D. Nualart: “Stochastic integration with respect to the fractional Brownian motion”, Stoch. Stoch. Rep., Vol. 75, (2003), pp. 277–305.

    Google Scholar 

  2. X. Bardina, M. Jolis and C.A. Tudor: “Weak approximation of the multiple integrals with respect to the fractional Brownian motion”, Stoch. Proc. Appl., Vol. 105, (2003), pp. 315–344.

    Article  MATH  MathSciNet  Google Scholar 

  3. O.E. Barndorff-Nielsen and N. Shephard: “Econometric Analysis of realized volatility and its use in estimating stochastic volatility models”, J. Roy. Stat. Soc., B, Vol. 64, (2002), pp. 255–280.

    MathSciNet  Google Scholar 

  4. O.E. Barndorff-Nielsen and N. Shephard: “Realized power variation and stochastic volatility models”, Bernoulli, Vol. 9, (2003), pp. 243–265.

    MATH  MathSciNet  Google Scholar 

  5. O.E. Barndorff-Nielsen and N. Shephard: “Power and bipower with stochastic volatility and jumps” (with discussion), J. Financial Econometrics, Vol. 2, (2004), pp. 1–48.

    Article  Google Scholar 

  6. O.E. Barndorff-Nielsen and N. Shephard: “Econometric Analysis of realized covariation: high frequency covariance, regression and correlation in financial economics”, Econometrica, Vol. 72, (2004), pp. 885–925.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Bojdecki, L. Gorostiza and A. Talarczyk: “Sub-fractional Brownian motion and its relation to occupation times”, Stat. & Probab. Lett., Vol. 69, (2004), pp. 405–419.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Caithamer: “Decoupled double stochastic fractional integrals”, Stochastics, Vol. 77, Vol. 3, (2005), pp. 205–210.

    MathSciNet  Google Scholar 

  9. J.M. Corcuera, D. Nualart and J.C. Woerner: “Power variation of some integral long-memory processes”, Bernoulli, Vol. 14(4), (2006), pp. 713–735.

    Article  MathSciNet  Google Scholar 

  10. A. Dasgupta and G. Kallianpur: “Chaos decomposition of multiple fractional integrals and applications”, Probab. Th. Rel. Fields, Vol. 115, (1999), pp. 505–525.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Dasgupta and G. Kallianpur: “Multiple fractional integrals”, Probab. Th. Rel. Fields, Vol. 115, (1999), pp. 527–548.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Duncan, Y. Hu and B. Pasik-Dunkan: “Stochastic calculus for fractional Brownian motion I. Theory”, SIAM J. Control Optim., Vol. 38(2), (2000), pp. 582–612.

    Article  Google Scholar 

  13. J. M. E. Guerra and D. Nualart: “The 1/H-variation of the divergence integral with respect to the fractional Brownian motion for H > 1/2 and fractional Bessel processes”, Stoch. Proc. Appl., Vol. 115, (2005), pp. 91–115.

    Article  MATH  MathSciNet  Google Scholar 

  14. Y. Hu and P.A. Meyer: Sur les integrales multiples de Stratonovich, Séminaire de Probabilités XXII, Lecture Notes in Math., Vol. 1321, Springer-Verlag, 1988, pp. 72-81.

  15. Y. Hu and P.A. Meyer: “”On the approximation of Stratonovich multiple integrals”, In: S. Cambanis, J.K. Ghosh, R.L. Karandikar and P.K. Sen (Eds.): Stochastic Processes: A festschrift in honor of G. Kallianpur, Springer-Verlag, 1993, pp. 141-147.

  16. K. Itô: “Multiple Wiener integral”, J. Math. Soc. Japan, Vol. 3, (1951), pp. 157–169.

    Article  MATH  MathSciNet  Google Scholar 

  17. H.P. McKean: “Wiener’s theory of nonlinear noise”, In: Stochastic Differential Equations. Proc. SIAM-AMS, Vol. 6, (1973), pp. 191–289.

    MathSciNet  Google Scholar 

  18. T. Mori and H. Oodaira: “The law of the iterated logarithm for self-similar processes represented by multiple Wiener integrals”, Probab. Th. Rel. Fields, Vol. 71, (1986), pp. 367–391.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Nualart: The Malliavin Calculus and Related Topics, Springer-Verlag, 1995.

  20. D. Nualart: “Stochastic integration with respect to fractional Brownian motion and aplications”, In: J.M. Gonzales-Barrios, J. León and A. Meda (Eds.): Stochastic Models. Contemporary Mathematics, Vol. 336, (2003), pp. 3–39.

  21. V. Pérez-Abreu and C. Tudor: “Multiple stochastic fractional integrals: A transfer principle for multiple stochastic fractional integrals”, Bol. Soc. Mat. Mex., Vol. 8(3), (2002), pp. 187–203.

    MATH  Google Scholar 

  22. V. Pipiras and M. Taqqu: “Are classes of deterministic integrands for fractional Brownian motion on an interval complete?”, Bernoulli, Vol. 7, (2001), pp. 873–897.

    Article  MATH  MathSciNet  Google Scholar 

  23. S.G. Samko, A.A. Kilbas and O.I. Marichev: Fractional Integrals and Derivatives, Gordon and Breach Science, 1993.

  24. J.L. Solé and F. Utzet: “Stratonovich integral and trace”, Stoch. Stoch. Rep., Vol. 29, (1990), pp. 203–220.

    MATH  Google Scholar 

  25. E. M. Stein: Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1971.

  26. C. Tudor: “Some properties of the sub-fractional Brownian motion”, Stochastics, (2007) (to appear).

  27. J.H.C. Woerner: “Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models”, Statistics and Decisions, Vol. 21, (2003), pp. 47–68.

    Article  MATH  MathSciNet  Google Scholar 

  28. J.H.C. Woerner: “Estimation of integrated volatility in stochastic volatility models”, Appl. Stoch. Models Bus., Vol. 21, (2005), pp. 27–44.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Zakai: “Stochastic integration, trace and the skeleton of Wiener functionals”, Stochastics, Vol. 32, (1990), pp. 93–108.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professors Ioan Cuculescu and Marius Iosifescu on the occasion of their 70th birthdays.

About this article

Cite this article

Tudor, C., Tudor, M. Power variation of multiple fractional integrals. centr.eur.j.math. 5, 358–372 (2007). https://doi.org/10.2478/s11533-007-0001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-007-0001-9

Keywords

MSC (2000)

Navigation