Skip to main content
Log in

A family of regular vertex operator algebras with two generators

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

For every m ∈ ℂ ∖ {0, −2} and every nonnegative integer k we define the vertex operator (super)algebra D m,k having two generators and rank \(\frac{{3m}}{{m + 2}}\). If m is a positive integer then D m,k can be realized as a subalgebra of a lattice vertex algebra. In this case, we prove that D m,k is a regular vertex operator (super) algebra and find the number of inequivalent irreducible modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Adamović: “Rationality of Neveu-Schwarz vertex operator superalgebras”, Int. Math. Res. Not., Vol. 17, (1997), pp. 865–874

    Article  Google Scholar 

  2. D. Adamović: “Representations of the N = 2 superconformal vertex algebra”, Int. Math. Res. Not., Vol. 2, (1999), pp. 61–79

    Article  Google Scholar 

  3. D. Adamović: “Vertex algebra approach to fusion rules for N = 2 superconformal minimal models”, J. Algebra, Vol. 239, (2001), pp. 549–572

    Article  MathSciNet  Google Scholar 

  4. D. Adamović: Regularity of certain vertex operator superalgebras, Contemp. Math., Vol. 343, Amer. Math. Soc., Providence, 2004, pp. 1–16.

    Google Scholar 

  5. T. Abe, G. Buhl and C. Dong: “Rationality, regularity and C 2-cofiniteness”, Trans. Amer. Math. Soc., Vol. 356, (2004), pp. 3391–3402.

    Article  MathSciNet  Google Scholar 

  6. D. Adamović and A. Milas: “Vertex operator algebras associated to the modular invariant representations for A (1)1 ”, Math. Res. Lett., Vol. 2, (1995), pp. 563–575

    MathSciNet  Google Scholar 

  7. C. Dong: “Vertex algebras associated with even lattices”, J. Algebra, Vol. 160, (1993), pp. 245–265.

    Article  Google Scholar 

  8. C. Dong and J. Lepowsky: Generalized vertex algebras and relative vertex operators, Birkhäuser, Boston, 1993.

    MATH  Google Scholar 

  9. C. Dong, H. Li and G. Mason: “Regularity of rational vertex operator algebras”, Adv. Math., Vol. 132, (1997), pp. 148–166

    Article  MathSciNet  Google Scholar 

  10. C. Dong, G. Mason and Y. Zhu: “Discrete series of the Virasoro algebra and the Moonshine module”, Proc. Sympos. Math. Amer. Math. Soc., Vol. 56(2), (1994), pp. 295–316

    MathSciNet  Google Scholar 

  11. W. Eholzer and M.R. Gaberdiel: “Unitarity of rational N = 2 superconformal theories”, Comm. Math. Phys., Vol. 186, (1997), pp. 61–85.

    MathSciNet  Google Scholar 

  12. I.B. Frenkel, Y.-Z. Huang and J. Lepowsky: “On axiomatic approaches to vertex operator algebras and modules”, Memoris Am. Math. Soc., Vol. 104, 1993.

  13. I. B. Frenkel, J. Lepowsky and A. Meurman: Vertex Operator Algebras and the Monster, Pure Appl. Math., Vol. 134, Academic Press, New York, 1988.

    Google Scholar 

  14. I.B. Frenkel and Y. Zhu: “Vertex operator algebras associated to representations of affine and Virasoro algebras”, Duke Math. J., Vol. 66, (1992), pp. 123–168.

    Article  MathSciNet  Google Scholar 

  15. B.L. Feigin, A.M. Semikhatov and I.Yu. Tipunin: “Equivalence between chain categories of representations of affine sl(2) and N = 2 superconformal algebras”, J. Math. Phys., Vol. 39, (1998), pp. 3865–3905

    Article  MathSciNet  Google Scholar 

  16. B.L. Feigin, A.M. Semikhatov and I.Yu. Tipunin: “A semi-infinite construction of unitary N=2 modules”, Theor. Math. Phys., Vol. 126(1), (2001), pp. 1–47.

    Article  MathSciNet  Google Scholar 

  17. Y.-Z Huang and A. Milas: “Intertwining operator superalgebras and vertex tensor categories for superconformal algebras”, II. Trans. Amer. Math. Soc., Vol. 354, (2002), pp. 363–385.

    Article  MathSciNet  Google Scholar 

  18. V.G. Kac: Vertex Algebras for Beginners, University Lecture Series, Vol. 10, 2nd ed., AMS, 1998.

  19. Y. Kazama and H. Suzuki: “New N=2 superconformal field theories and superstring compactifications”, Nuclear Phys. B, Vol. 321, (1989), pp. 232–268.

    Article  MathSciNet  Google Scholar 

  20. H. Li: “Local systems of vertex operators, vertex superalgebras and modules”, J. Pure Appl. Algebra, Vol. 109, (1996), pp. 143–195.

    Article  MathSciNet  Google Scholar 

  21. H. Li: “Extension of Vertex Operator Algebras by a Self-Dual Simple Module”, J. Algebra, Vol. 187, (1997), pp. 236–267.

    Article  MathSciNet  Google Scholar 

  22. H. Li: “Certain extensions of vertex operator algebras of affine type”, Comm. Math. Phys., Vol. 217, (2001), pp. 653–696.

    Article  MathSciNet  Google Scholar 

  23. H. Li: “Some finiteness properties of regular vertex operator algebras”, J. Algebra, Vol. 212, (1999), pp. 495–514.

    Article  MathSciNet  Google Scholar 

  24. M. Wakimoto: Lectures on infinite-dimensional Lie algebra, algebra, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.

    Google Scholar 

  25. W. Wang: “Rationality of Virasoro Vertex operator algebras”, Internat. Math. Res. Notices, Vol. 71(1), (1993), PP. 197–211.

    Article  Google Scholar 

  26. Xu Xiaoping: Introduction to vertex operator superalgebras and their modules, Mathematics and Its Applications, Vol. 456, Kluwer Academic Publishers, 1998.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Adamović, D. A family of regular vertex operator algebras with two generators. centr.eur.j.math. 5, 1–18 (2007). https://doi.org/10.2478/s11533-006-0045-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-006-0045-2

Keywords

MSC (2000)

Navigation