Azobenzene functionalized mesoporous AlMCM-41-type support for drug release applications

Abstract

A light-responsive material, aminoazobenzene functionalized AlMCM-41, was synthesized and characterized in order to be used as carrier for drug delivery devices. The light-induced hydrophobic-hydrophilic switching effect of azobenzene functionalized aluminosilicate was exploited in the release of irinotecan, a cytostatic drug. To obtain the functionalized mesoporous support, an azobenzene-silane precursor was synthesized by coupling 4-(4′-aminophenylazo) benzoic acid with 3-aminopropyl triethoxysilane and further grafted on AlMCM-41. The azobenzene functionalized mesoporous aluminosilicate exhibited no significant toxicity towards murine fibroblast healthy cells and a reduced toxicity towards murine melanocyte cells. The hybrid materials obtained by loading irinotecan on AlMCM-41 (wt. 35.4%) and aminoazobenzene modified AlMCM-41 (wt. 22%), respectively were characterized by FTIR, small and wide angle XRD, N2 adsorption-desorption isotherms and DSC analyses. A two-fold increase in the drug release rate from azobenzene functionalized aluminosilicate in phosphate buffer solution under UV irradiation was noticed, as compared with dark conditions. Moreover, the azobenzene functionalization of AlMCM-41 significantly increased the irinotecan delivery rate and total cumulative release in comparison with the pristine AlMCM-41 in similar conditions.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Colilla, B. Gonzalez, M. Vallet-Regi, Biomat. Sci. 1, 114 (2013)

    CAS  Article  Google Scholar 

  2. [2]

    Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Chem. Soc. Rev. 41, 2590 (2012)

    CAS  Article  Google Scholar 

  3. [3]

    A. Popat, S.B. Hartono, F. Stahr, J. Liu, S.Z. Qiao, G. Qing Lu, Nanoscale 3, 2801 (2011)

    CAS  Article  Google Scholar 

  4. [4]

    J.L. Vivero-Escoto, I.I. Slowing, B.G. Trewyn, V.S.Y. Lin, Small 6, 1952 (2010)

    CAS  Article  Google Scholar 

  5. [5]

    F. Tang, L. Li, D. Chen, Adv. Mater. 24, 1504 (2012)

    CAS  Article  Google Scholar 

  6. [6]

    M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Edit. 46, 7548 (2007)

    Article  Google Scholar 

  7. [7]

    T. Tanaka, H. Ogino, M. Iwamoto, Langmuir 23, 11417 (2007)

    CAS  Article  Google Scholar 

  8. [8]

    N. Liu, Z. Chen, D.R. Dunphy, Y.-B. Jiang, R.A. Assink, C.J. Brinker, Angew. Chem. Int. Edit. 42, 1731 (2003)

    CAS  Article  Google Scholar 

  9. [9]

    J. Lu, E. Choi, F. Tamanoi, J.I. Zink, Small 4, 421 (2008)

    CAS  Article  Google Scholar 

  10. [10]

    S. Angelos, E. Choi, F. Vögtle, L. De Cola, J.I. Zink, J. Phys. Chem. C 111, 6589 (2007)

    CAS  Article  Google Scholar 

  11. [11]

    M. Alvaro, M. Benitez, D. Das, H. Garcia, E. Peris, Chem. Mater. 17, 4958 (2005)

    CAS  Article  Google Scholar 

  12. [12]

    Y. Zhu, M. Fujiwara, Angew. Chem. Int. Edit. 46, 2241 (2007)

    CAS  Article  Google Scholar 

  13. [13]

    Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, W. Tan, ACS Nano 6, 6337 (2012)

    CAS  Article  Google Scholar 

  14. [14]

    D.P. Ferris, Y.-L. Zhao, N.M. Khashab, H.A. Khatib, J.F. Stoddart, J.I. Zink, J. Am. Chem. Soc. 131, 1686 (2009)

    CAS  Article  Google Scholar 

  15. [15]

    Y.-W. Yang, Med. Chem. Comm. 2, 1033 (2011)

    CAS  Article  Google Scholar 

  16. [16]

    R.H. El Halabieh, O. Mermut, C.J. Barrett, Pure Appl. Chem. 76, 1445 (2004)

    Article  Google Scholar 

  17. [17]

    X. Pei, A. Fernandes, B. Mathy, X. Laloyaux, B. Nysten, O. Riant, A.M. Jonas, Langmuir 27, 9403 (2011)

    CAS  Article  Google Scholar 

  18. [18]

    C. Song, R. Griffin, H. Park, In: B. Teicher (Ed.), Cancer Drug Resistance (Humana Press, Totowa, New Jersey, 2006) 21

  19. [19]

    K.H. Schündehütte, Houben-Weyl Methoden der Organischen Chemie (Thieme, Stuttgart, 196510/3 (in German)

    Google Scholar 

  20. [20]

    G.B. Demirel, N. Dilsiz, M. Cakmak, T. Caykara, J. Mater. Chem. 21, 3189 (2011)

    CAS  Article  Google Scholar 

  21. [21]

    F. Laduron, V. Tamborowski, L. Moens, A. Horvath, D. De Smaele, S. Leurs, Org. Process. Res. Dev. 9, 102 (2005)

    CAS  Article  Google Scholar 

  22. [22]

    G. Maria, D. Berger, S. Nastase, I. Luta, Micropor. Mesopor. Mat. 149, 25 (2012)

    CAS  Article  Google Scholar 

  23. [23]

    A.H. Janssen, A.J. Koster, K.P. de Jong, J. Phys. Chem. B 106, 11905 (2002)

    CAS  Article  Google Scholar 

  24. [24]

    M.J.B. Souza, A.S. Araujo, A.M.G. Pedrosa, B.A. Marinkovic, P.M. Jardim, E. Morgado Jr, Mater. Lett. 60, 2682 (2006)

    CAS  Article  Google Scholar 

  25. [25]

    S. Nastase, L. Bajenaru, C. Matei, R. A. Mitran, D. Berger, Micropor. Mesopor. Mat. 182, 32 (2013)

    CAS  Article  Google Scholar 

  26. [26]

    D. Arcos, A. López-Noriega, E. Ruiz-Hernández, O. Terasaki, M. Vallet-Regí, Chem. Mater. 21, 1000 (2009)

    CAS  Article  Google Scholar 

  27. [27]

    Q. He, J. Shi, F. Chen, M. Zhu, L. Zhang, Biomater. 31, 3335 (2010)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cristian Matei.

About this article

Cite this article

Mitran, RA., Berger, D., Băjenaru, L. et al. Azobenzene functionalized mesoporous AlMCM-41-type support for drug release applications. cent.eur.j.chem. 12, 788–795 (2014). https://doi.org/10.2478/s11532-014-0534-2

Download citation

Keywords

  • Aluminosilicate
  • Drug delivery systems
  • Aminoazobenzene
  • Light-responsive material
  • Irinotecan