Advertisement

Central European Journal of Chemistry

, Volume 12, Issue 7, pp 788–795 | Cite as

Azobenzene functionalized mesoporous AlMCM-41-type support for drug release applications

  • Raul-Augustin Mitran
  • Daniela Berger
  • Laura Băjenaru
  • Silviu Năstase
  • Cristian Andronescu
  • Cristian MateiEmail author
Research Article RICCCE 18
  • 156 Downloads

Abstract

A light-responsive material, aminoazobenzene functionalized AlMCM-41, was synthesized and characterized in order to be used as carrier for drug delivery devices. The light-induced hydrophobic-hydrophilic switching effect of azobenzene functionalized aluminosilicate was exploited in the release of irinotecan, a cytostatic drug. To obtain the functionalized mesoporous support, an azobenzene-silane precursor was synthesized by coupling 4-(4′-aminophenylazo) benzoic acid with 3-aminopropyl triethoxysilane and further grafted on AlMCM-41. The azobenzene functionalized mesoporous aluminosilicate exhibited no significant toxicity towards murine fibroblast healthy cells and a reduced toxicity towards murine melanocyte cells. The hybrid materials obtained by loading irinotecan on AlMCM-41 (wt. 35.4%) and aminoazobenzene modified AlMCM-41 (wt. 22%), respectively were characterized by FTIR, small and wide angle XRD, N2 adsorption-desorption isotherms and DSC analyses. A two-fold increase in the drug release rate from azobenzene functionalized aluminosilicate in phosphate buffer solution under UV irradiation was noticed, as compared with dark conditions. Moreover, the azobenzene functionalization of AlMCM-41 significantly increased the irinotecan delivery rate and total cumulative release in comparison with the pristine AlMCM-41 in similar conditions.

Keywords

Aluminosilicate Drug delivery systems Aminoazobenzene Light-responsive material Irinotecan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Colilla, B. Gonzalez, M. Vallet-Regi, Biomat. Sci. 1, 114 (2013)CrossRefGoogle Scholar
  2. [2]
    Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Chem. Soc. Rev. 41, 2590 (2012)CrossRefGoogle Scholar
  3. [3]
    A. Popat, S.B. Hartono, F. Stahr, J. Liu, S.Z. Qiao, G. Qing Lu, Nanoscale 3, 2801 (2011)CrossRefGoogle Scholar
  4. [4]
    J.L. Vivero-Escoto, I.I. Slowing, B.G. Trewyn, V.S.Y. Lin, Small 6, 1952 (2010)CrossRefGoogle Scholar
  5. [5]
    F. Tang, L. Li, D. Chen, Adv. Mater. 24, 1504 (2012)CrossRefGoogle Scholar
  6. [6]
    M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Edit. 46, 7548 (2007)CrossRefGoogle Scholar
  7. [7]
    T. Tanaka, H. Ogino, M. Iwamoto, Langmuir 23, 11417 (2007)CrossRefGoogle Scholar
  8. [8]
    N. Liu, Z. Chen, D.R. Dunphy, Y.-B. Jiang, R.A. Assink, C.J. Brinker, Angew. Chem. Int. Edit. 42, 1731 (2003)CrossRefGoogle Scholar
  9. [9]
    J. Lu, E. Choi, F. Tamanoi, J.I. Zink, Small 4, 421 (2008)CrossRefGoogle Scholar
  10. [10]
    S. Angelos, E. Choi, F. Vögtle, L. De Cola, J.I. Zink, J. Phys. Chem. C 111, 6589 (2007)CrossRefGoogle Scholar
  11. [11]
    M. Alvaro, M. Benitez, D. Das, H. Garcia, E. Peris, Chem. Mater. 17, 4958 (2005)CrossRefGoogle Scholar
  12. [12]
    Y. Zhu, M. Fujiwara, Angew. Chem. Int. Edit. 46, 2241 (2007)CrossRefGoogle Scholar
  13. [13]
    Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, W. Tan, ACS Nano 6, 6337 (2012)CrossRefGoogle Scholar
  14. [14]
    D.P. Ferris, Y.-L. Zhao, N.M. Khashab, H.A. Khatib, J.F. Stoddart, J.I. Zink, J. Am. Chem. Soc. 131, 1686 (2009)CrossRefGoogle Scholar
  15. [15]
    Y.-W. Yang, Med. Chem. Comm. 2, 1033 (2011)CrossRefGoogle Scholar
  16. [16]
    R.H. El Halabieh, O. Mermut, C.J. Barrett, Pure Appl. Chem. 76, 1445 (2004)CrossRefGoogle Scholar
  17. [17]
    X. Pei, A. Fernandes, B. Mathy, X. Laloyaux, B. Nysten, O. Riant, A.M. Jonas, Langmuir 27, 9403 (2011)CrossRefGoogle Scholar
  18. [18]
    C. Song, R. Griffin, H. Park, In: B. Teicher (Ed.), Cancer Drug Resistance (Humana Press, Totowa, New Jersey, 2006) 21Google Scholar
  19. [19]
    K.H. Schündehütte, Houben-Weyl Methoden der Organischen Chemie (Thieme, Stuttgart, 196510/3 (in German)Google Scholar
  20. [20]
    G.B. Demirel, N. Dilsiz, M. Cakmak, T. Caykara, J. Mater. Chem. 21, 3189 (2011)CrossRefGoogle Scholar
  21. [21]
    F. Laduron, V. Tamborowski, L. Moens, A. Horvath, D. De Smaele, S. Leurs, Org. Process. Res. Dev. 9, 102 (2005)CrossRefGoogle Scholar
  22. [22]
    G. Maria, D. Berger, S. Nastase, I. Luta, Micropor. Mesopor. Mat. 149, 25 (2012)CrossRefGoogle Scholar
  23. [23]
    A.H. Janssen, A.J. Koster, K.P. de Jong, J. Phys. Chem. B 106, 11905 (2002)CrossRefGoogle Scholar
  24. [24]
    M.J.B. Souza, A.S. Araujo, A.M.G. Pedrosa, B.A. Marinkovic, P.M. Jardim, E. Morgado Jr, Mater. Lett. 60, 2682 (2006)CrossRefGoogle Scholar
  25. [25]
    S. Nastase, L. Bajenaru, C. Matei, R. A. Mitran, D. Berger, Micropor. Mesopor. Mat. 182, 32 (2013)CrossRefGoogle Scholar
  26. [26]
    D. Arcos, A. López-Noriega, E. Ruiz-Hernández, O. Terasaki, M. Vallet-Regí, Chem. Mater. 21, 1000 (2009)CrossRefGoogle Scholar
  27. [27]
    Q. He, J. Shi, F. Chen, M. Zhu, L. Zhang, Biomater. 31, 3335 (2010)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Raul-Augustin Mitran
    • 1
    • 2
  • Daniela Berger
    • 1
  • Laura Băjenaru
    • 1
  • Silviu Năstase
    • 1
  • Cristian Andronescu
    • 3
  • Cristian Matei
    • 1
    Email author
  1. 1.Faculty of Applied Chemistry and Materials ScienceUniversity “Politehnica” of BucharestBucharestRomania
  2. 2.SARA Pharm SolutionsBucharestRomania
  3. 3.“Ilie Murgulescu” Institute of Physical ChemistryRomanian Academy of SciencesBucharestRomania

Personalised recommendations