Interfacial behavior of water bound to nitrocellulose containing residual nitric and sulfuric acids

Abstract

To prepare nitrocellulose (NC), microcrystalline cellulose was treated in a mixture of nitric and sulfuric acids. Prepared NC containing a small amount of acids was studied at a different hydration degree (h = 10–1000 mg g−1) in different dispersion media (chloroform-d, acetone-d6 or their mixtures) using low-temperature 1H NMR spectroscopy. The hydration degree and the presence of residual acids affected the temperature dependence of the chemical shifts of proton resonance of water bound to NC. The Gibbs free energy of bound water became less negative with increasing hydration rate. The chloroform and acetone media affect the behavior of bound-to-NC water unfrozen at T<273 K differently. Quantum chemical calculations were performed using ab initio (HF/6-31G(d,p)), DFT (B3LYP/6-31G(d,p)) and semiempirical PM7 methods to analyze the interfacial behavior of water interacting with NC containing residual amounts of nitric and sulfuric acids.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    E.Yu. Orlova, Chemistry of High Explosives (Chemistry, Leningrad, 1973) (in Russian)

    Google Scholar 

  2. [2]

    P.C. Painter, M.M. Coleman, Essentials of Polymer Science and Engineering (DEStech Publications, Inc., Lancaster, USA, 2009)

    Google Scholar 

  3. [3]

    R. Talbert, Paint Technology Handbook (Grand Rapids, Michigan, USA, 2007)

    Google Scholar 

  4. [4]

    T. Cheeseright, M. Mackey, S. Rose, J.G. Vinter, Expert Opin. Drug Discov. 2, 131 (2007)

    CAS  Article  Google Scholar 

  5. [5]

    TorchLite 10.0.1 wwwhttp://www.cresset-group.com/products/torch/torchlite/ (accessed Sept 4, 2013)

  6. [6]

    A. Beveridge (Ed.), Forensic Investigations of Explosions (Taylor & Francis, London, 2003)

    Google Scholar 

  7. [7]

    T. Urbanski, Chemistry and Technology of Explosives (Pergamon Press, New York, 1964) vol. 2

    Google Scholar 

  8. [8]

    V.I. Gindich, L.V. Zabelin, G.N. Marchenko, Production of Cellulose Nitrates. Technology and Equipment (Central Research Institute of Scientific and Technical Information, Moscow, 1984) (in Russian)

    Google Scholar 

  9. [9]

    J.A. Pople, W.G. Schneider, H.J. Bernstein, High-Resolution Nuclear Magnetic Resonance (McGraw-Hill Book Company, New York 1959)

    Google Scholar 

  10. [10]

    V.M. Gun’ko et al., Adv. Colloid Interface Sci. 118, 125 (2005)

    Google Scholar 

  11. [11]

    V.M. Gun’ko, V.V. Turov, Nuclear Magnetic Resonance Studies of Interfacial Phenomena (CRC Press, Boca Raton, 2013)

    Google Scholar 

  12. [12]

    V.V. Turov et al., Colloids Surf. A: Physicochem. Eng. Aspects 390, 48 (2011)

    CAS  Article  Google Scholar 

  13. [13]

    V.M. Gun’ko et al., J. Colloid Interface Sci. 368, 263 (2012)

    Article  Google Scholar 

  14. [14]

    V.M. Gun’ko et al., Carbon 57, 191 (2013)

    Article  Google Scholar 

  15. [15]

    V.M. Gun’ko et al., Adsorption 19, 305 (2013)

    Article  Google Scholar 

  16. [16]

    Yu.E. Shapiro, Prog. Polymer Sci. 36, 1184 (2011)

    CAS  Article  Google Scholar 

  17. [17]

    G.K. Buckee, J. Inst. Brew. 100, 57 (1994)

    CAS  Article  Google Scholar 

  18. [18]

    V.P. Glushko (Ed.), Handbook of Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1978) (in Russian)

    Google Scholar 

  19. [19]

    D.P. Gallegos, K. Munn, D.M. Smith, D.L. Stermer, J. Colloid Interface Sci. 119, 127 (1986)

    Article  Google Scholar 

  20. [20]

    J.H. Strange, M. Rahman, E.G. Smith, Phys. Rev. Lett. 71, 3589 (1993)

    CAS  Article  Google Scholar 

  21. [21]

    J. Mitchell, J.B.W. Webber, J.H. Strange, Physics Reports 461, 1 (2008)

    CAS  Article  Google Scholar 

  22. [22]

    O.V. Petrov, I. Furó, Prog. Nuclear Magn. Reson. Spectr. 54, 97 (2009)

    CAS  Article  Google Scholar 

  23. [23]

    M. J. Frisch et al, Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford CT, 2013)

    Google Scholar 

  24. [24]

    A. A. Granovsky, J. Chem. Phys. 134, 214113 (2011)

    Article  Google Scholar 

  25. [25]

    A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 113, 6378 (2009)

    CAS  Article  Google Scholar 

  26. [26]

    J.J.P. Stewart, MOPAC 2012, Versions 13.234W and 13.234L (Stewart Computational Chemistry, Colorado Springs, CO, USA, 2013) http://openmopac.net/

    Google Scholar 

  27. [27]

    V.M. Gun’ko, J. Theor. Comput. Chem. 2, 1 (2013)

    Google Scholar 

  28. [28]

    I.P. Gragerov, V.K. Pogorelyi, I.F. Franchuk, The Hydrogen Bond and Fast Proton Exchange (Naukova Dumka, Kiev, 1978) (in Russian)

    Google Scholar 

  29. [29]

    R.P. Bell, Proton in Chemistry (Chapman and Holly, London, 1959)

    Google Scholar 

  30. [30]

    D. Grasso, J.C. Carrington, P. Chheda, B. Kim, Water Res. 29, 49 (1995)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladimir M. Gun’ko.

About this article

Cite this article

Gun’ko, V.M., Tomaszewski, W., Krupska, T.V. et al. Interfacial behavior of water bound to nitrocellulose containing residual nitric and sulfuric acids. cent.eur.j.chem. 12, 509–518 (2014). https://doi.org/10.2478/s11532-013-0397-y

Download citation

Keywords

  • Nitrocellulose
  • Adsorbed water
  • Co-adsorbed organic solvents
  • Residual nitric and sulfuric acids
  • Low-temperature 1H NMR spectroscopy