Skip to main content
Log in

Corrosion depth profiles of nitrided titanium alloy in acidified sulphate solution

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

Thick (400 µm) glow-discharge nitrided layers, TiN+Ti2N + αTi(N) type, have been produced on the Ti-1Al-1Mn titanium alloy. Using a progressive thinning method, the polarization characteristics at different depths of nitrided layers have been measured. From the plots of obtained potentiodynamic polarization curves the depth profiles of characteristic anodic and cathodic currents (at potentials corresponding to (a) hydride formation, (b) hydrogen evolution, (c) primary passivation, (d) oxygen evolution and (e) secondary passivation) as well as polarization resistance have been determined in 0.5 M Na2SO4 solution acidified to pH = 2. The anomalously high slope of the polarization curves in the cathodic region has been ascribed to the formation of titanium hydride. It has been shown that outer nitrided layers (up to 25 µm) exhibit excellent acid corrosion resistance owing to strong inhibition of the anodic process by TiN phase. Corrosion resistance of deeper situated layers gradually decreases and at depths of 250–370 µm the corrosion process is accelerated by presence of TiO2 precipitations. Nitrided layers, unlike the alloy core, allow oxygen evolution on the oxy-nitrided surface at potential of +1.6 V and at more positive potentials gradual transformation of the surfacial film into TiO2 takes place. Secondary passivation on nitrided titanium is less efficient than that in the absence of Ti-N species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M. Perillo, Corrosion 62, 182 (2006)

    Article  CAS  Google Scholar 

  2. D. Starosvetsky, I. Gotman, Biomaterials 22, 1853 (2001)

    Article  CAS  Google Scholar 

  3. A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, A. Poyai, J. Microsc. Soc.-Thailand 24(2), 103 (2010)

    Google Scholar 

  4. J. Piippo, B. Elsener, H. Bohni, Surf. Coat. Tech. 61, 43 (1993)

    Article  CAS  Google Scholar 

  5. B.N. Arzamasov, L.G. Kirichenko, A.N. Kuznetsov, T.V. Soloveva, Met. Sci. Heat Treat. 40, 378 (1998)

    Article  CAS  Google Scholar 

  6. S. Szmukler-Moncler, M. Bischof, R. Nedir, M. Ermrich, Chin, Oral Impl. Res. 21, 944 (2010)

    CAS  Google Scholar 

  7. K. Videm, S. Lamolle, M. Monjo, J.E. Ellingsen, S.P. Lyngatadaas, H.J. Haugen, Appl.Suf. Sci. 255, 3011 (2008)

    Article  CAS  Google Scholar 

  8. A. Zhecheva, W. Sha, S. Malinov, A. Long, Surf. Coat. Tech. 200, 2192 (2005)

    Article  CAS  Google Scholar 

  9. H.J. Goldschmidt, Interstitial Alloys (Butterworths, London, 1967)

    Google Scholar 

  10. S. Malinov, A. Zhecheva, W. Sha, Proc. 13th IFHTSE Congress (ASM International, Materials Park, OH, 2003) 344

    Google Scholar 

  11. A. Czyrska-Filemonowicz, P.A. Buffat, M. Lucki, T. Moskalewicz, W. Rakowski, J. Lekki, T. Wierzchon, Acta Mater. 53(16), 4367 (2005)

    Article  CAS  Google Scholar 

  12. E. Czarnowska, M. Ossowski, J. Morgiel, T. Wierzchon, J. Nanosci. Nanotechnol. 11, 8917 (2011)

    Article  CAS  Google Scholar 

  13. T.P. Hoar, Platinum Met. Rev. 4, 59 (1960)

    CAS  Google Scholar 

  14. V.A. Lavrenko, V.A. Shvets, N.V. Boshitskaya, G.N. Makarenko, Powder Metal. Met. Ceram. 40, 630 (2001)

    Article  CAS  Google Scholar 

  15. A.I. Shcherbakov, Zashchita Met. 38, 174 (2002) (in Russian)

    Google Scholar 

  16. M.C. Burrell, N.R. Armstrong, Langmuir 2, 37 (1986)

    Article  CAS  Google Scholar 

  17. I. Gurappa, Mater. Charact. 51, 131 (2003)

    Article  Google Scholar 

  18. M.J. Donachie, Jr., Titanium — A Technical Guide, 2nd edition (ASM International, Materials Park, USA, 2000)

    Google Scholar 

  19. M.J. Munoz-Portero, J. Garcia-Anton, J.L. Guinon, R. Leiva_Garcia, Corros. Sci. 53, 1440 (2011)

    Article  CAS  Google Scholar 

  20. A.I. Shcherbakov, I.V. Kasatkina, Zashchita Met. 37, 435 (2001) (in Russian)

    Google Scholar 

  21. M.S. Khoma, O.M. Romaniv, O.I. Kuntyi, A.I. Tymchyshyn, Mater. Sci. 36, 780 (2000)

    Article  CAS  Google Scholar 

  22. R. Karpagavalli, A. Zhou, P. Chellamuthu, K. Nguyen, J. Biomed. Mater. Res., Part A 83A, 1087 (2007)

    Article  CAS  Google Scholar 

  23. L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak, Biomaterials 25, 2867 (2004)

    Article  CAS  Google Scholar 

  24. H.W. Kim, Y.H. Koh, L.H. Li, S. Lee, H.E. Kim, Biomaterials 25, 2533 (2004)

    Article  CAS  Google Scholar 

  25. W. Han, Y. Wang, Y. Zheng, Adv. Mater. Res. 79–82, 389 (2009)

    Article  Google Scholar 

  26. R. Carbone, I. Marangi, A. Zanardi, L. Giorgetti, E. Chierici, G. Berlanda, A. Podestà, F. Fiorentini, G. Bongiorno, P. Piseri, P.G. Pelicci, P. Milani, Biomaterials 27, 3221 (2006)

    Article  CAS  Google Scholar 

  27. W. Wilhelmsen, A.P. Grande, Electrochim. Acta 35, 1913 (1990)

    Article  CAS  Google Scholar 

  28. A. Rauscher, Z. Lukacs, Mater. Corros. 39, 280 (1988)

    Article  CAS  Google Scholar 

  29. Z.A. Foroulis, Mater. Corros. 30, 477 (1979)

    Article  CAS  Google Scholar 

  30. M. Stern, H. Wissenberg, J. Electrochem. Soc. 106, 755 (1959)

    Article  CAS  Google Scholar 

  31. M. Stern, H. Wissenberg, J. Electrochem. Soc. 106, 759 (1959)

    Article  CAS  Google Scholar 

  32. K. Jagielska-Wiaderek, H. Bala, P. Wieczorek, J. Rudnicki, D. Klimecka-Tatar, Arch. Metall. Mater. 54, 115 (2009)

    CAS  Google Scholar 

  33. K. Jagielska-Wiaderek, H. Bala, P. Wieczorek, J. Rudnicki, Arch. Metall. Mater. 55, 515 (2010)

    CAS  Google Scholar 

  34. K. Jagielska-Wiaderek, Arch. Metall. Mater. 57, 646 (2012)

    Google Scholar 

  35. Shreir’s Corrosion, Electrochemical Methods, 4th edition (Elsevier, UK, 2010) Vol. 2, 1358

    Google Scholar 

  36. H. Bala, L. Adamczyk, E. Owczarek, T. Gruetzner, B.Ch. Seyfang, Ochr. przed Korozja 55, 460 (2012) (in Polish)

    CAS  Google Scholar 

  37. A.N. Krasilshchikov, Zh. Fiz. Khim. 37, 531 (1963) (in Russian)

    CAS  Google Scholar 

  38. M.E. Lyons, R.L. Doyle, M.P. Brandon. Phys. Chem. Chem. Phys. 13(48), 21530 (2011)

    Article  CAS  Google Scholar 

  39. Shreir’s Corrosion, Corrosion of Titanium and its Alloys, 4th edition (Elsevier, UK, 2010) Vol. 3, 2042

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Jagielska-Wiaderek.

About this article

Cite this article

Jagielska-Wiaderek, K., Bala, H. & Wierzchon, T. Corrosion depth profiles of nitrided titanium alloy in acidified sulphate solution. cent.eur.j.chem. 11, 2005–2011 (2013). https://doi.org/10.2478/s11532-013-0342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-013-0342-0

Keywords

Navigation