Skip to main content
Log in

Magnetic resonance study of annealed and rinsed N-doped TiO2 nanoparticles

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

Nanoparticles of nitrogen-modified TiO2 (N-doped TiO2) calcined at 300°C and 350°C, have been prepared with and without water rinsing. Samples were characterized by x-ray diffractrometry (XRD) and optical spectroscopy. The electron paramagnetic resonance (EPR) spectra from centers involving oxygen vacancies were recorded for all samples. These could be attributed to paramagnetic surface centers of the hole type, for example to paramagnetic oxygen radicals O, O2 etc. The concentration of these centers increased after water rising and it further increased for samples annealed at higher temperature. Additionally, for samples calcined at 300°C, and calcined at 350°C and rinsed, the EPR spectra evidenced the presence of magnetic clusters of Ti3+ ions. The photocatalytic activity of samples was studied towards phenol decomposition under unltraviolet-visible (UV-Vis) irradiation. It was found that, in comparison to the starting materials, the rinsed materials showed increased photocatalytic activity towards phenol oxidation. The light absorption (UV-Vis/DRS) as well as surface Fourier transform infrared/diffuse reflectance spectroscopy (FTIR/DR) studies confirmed a significantly enhanced light absorption and the presence of nitrogen groups on the photocatalysts surfaces, respectively. A significant increase of concentration of paramagnetic centers connected with oxygen vacancies after water rising has had an essential influence on increasing their photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  2. B. O’Reagan, M. Grätzel, Nature 353, 135 (1991)

    Google Scholar 

  3. K.D. Schierbaum, U.K. Kirner, J.F. Geiger, W. Göpel, Sens. Actuators B 4, 87 (1991)

    Article  CAS  Google Scholar 

  4. M. Aono, R.R. Hasiguti, Phys. Rev. B 48, 12406 (1993)

    Article  CAS  Google Scholar 

  5. A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995)

    Article  CAS  Google Scholar 

  6. G. Pacchioni, Chem. Phys. Chem. 4, 1041 (2003)

    Article  CAS  Google Scholar 

  7. N. Serpone, J. Phys. Chem. B 110, 24287 (2006)

    Article  CAS  Google Scholar 

  8. V.N. Kuznetsov, N. Serpone, J. Phys. Chem. B 110, 25203 (2006)

    Article  CAS  Google Scholar 

  9. C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M.C. Paganini, E. Giamello, Chem. Phys. 339, 44 (2007)

    Article  Google Scholar 

  10. M.K. Nowotny, L.R. Sheppard, T. Bak, J. Nowotny, J. Phys. Chem. C 112, 5275 (2008)

    Article  CAS  Google Scholar 

  11. D.B. Strukov, G.S. Sneider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  CAS  Google Scholar 

  12. A.G. Kontos, A.I. Kontos, D.S. Tsoukleris, V. Likodimos, J. Kunze, P. Schmuki, P. Falaras, Nanotechnology 20, 045603 (2009)

    Article  CAS  Google Scholar 

  13. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)

    Article  CAS  Google Scholar 

  14. I. Mora-Seró, V. Likodimos, S. Giménez, E. Martínez-Ferrero, J. Albero, E. Palomares, A.G. Kontos, P. Falaras, J. Bisquert, J. Phys. Chem. C 114, 6755 (2010)

    Article  Google Scholar 

  15. V. Likodimos, D.D. Dionysiou, P. Falaras, Rev. Envir. Sci. Biotech. 9, (2010)

  16. S. Yang, L.E. Halliburton, A. Manivannan, P.H. Bunton, D.B. Baker, M. Klemm, S. Horn, A. Fujishima, Appl. Phys. Lett. 94, 162114 (2009)

    Article  Google Scholar 

  17. L. Gomathi Devi, S. Girish Kumar, Cent. Eur. J. Chem. 9, 959 (2011)

    Article  CAS  Google Scholar 

  18. R. Kralchevska, M. Milanova, M. Bistan, A. Pintar, D. Todorovsky, Cent. Eur. J. Chem. 10, 1137 (2012)

    Article  CAS  Google Scholar 

  19. J. Choina, H. Duwensee, G.-U. Flechsig, H. Kosslick, A.W. Morawski, V.A Tuan, A. Schulz, Cent. Eur. J. Chem. 8, 1288 (2010)

    Article  CAS  Google Scholar 

  20. K. Zhang, W. Xu, X. Li, S. Zheng, G. Xu, Cent. Eur. J. Chem. 4, 234 (2006)

    Article  Google Scholar 

  21. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  CAS  Google Scholar 

  22. N. Guskos, A. Guskos, J. Typek, P. Berczynski, D. Dolat, B. Grzmil, A. Morawski, Mater. Sci. Eng. B-Adv. 177, 223 (2012)

    Article  CAS  Google Scholar 

  23. N. Guskos, A. Guskos, G. Zolnierkiwicz, J. Typek, P. Berczynski, D. Dolat, B. Grzmil, B. Ohtani, A.W. Morawski, Mater. Chem. Phys. 136, 889 (2012)

    Article  CAS  Google Scholar 

  24. P.F. Chester, J. Appl. Phys. 32, 2233 (1961)

    Article  CAS  Google Scholar 

  25. J. Kerssen, J. Volger, Physica 69, 535 (1973)

    Article  CAS  Google Scholar 

  26. G. Mele, R. Del Sole, G. Vasapollo, G. Marcı, E.G. Lopez, L. Palmisano, J.M. Coronado, M.D.H. Alonso, C. Malitesta, M.R. Guascito, J. Phys. Chem. B 109, 12347 (2005)

    Article  CAS  Google Scholar 

  27. C.P. Kumar, N.O. Gopal, T.C. Wang, M.S. Wong, S.C. Ke, J. Phys. Chem. B 110, 5223 (2006)

    Article  CAS  Google Scholar 

  28. F.D. Brandão, M.V.B. Pinheiro, G.M. Ribeiro, G. Medeiros-Ribeiro, K. Krambrock, Phys. Rev. B 80, 235204 (2009)

    Article  Google Scholar 

  29. S. Zhou, E. Čižmár, K. Potzger, M. Krause, G. Talut, M. Helm, J. Fassbender, S.A. Zvyagin, J. Wosnitza, H. Schmidt, Phys. Rev. B 79, 113201 (2009)

    Article  Google Scholar 

  30. B. Tiana, C. Li, F. Gua, H. Jianga, Y. Hua, J. Zhang, Chem. Eng. J. 151, 220 (2009)

    Article  Google Scholar 

  31. S. Yang, A.T. Brant, L.E. Halliburton, Phys. Rev. B 82, 035209 (2010)

    Article  Google Scholar 

  32. I.R. Macdonald, R.F. Howe, X. Zhang, W. Zhou, J. Photochem. 216, 238 (2010)

    Article  CAS  Google Scholar 

  33. P.M.M. Henderson, A. Kassiba, A. Gibaud, J. Phys. & Chem. Sol. 71, 1 (2010)

    Article  Google Scholar 

  34. I.A. Shkrob, T.W. Marin, S.D. Chemerisov, M.D. Sewilla, J. Phys. Chem. C 115, 4642 (2011)

    Article  CAS  Google Scholar 

  35. G. Liu, C. Han, M. Pelaez, D. Zhu, S. Liao, V. Likodimos, N. Ioannidis, A.G. Kontos, P. Falaras, P.S.M Dunlop, J.A. Byrne, D.D. Dionysiou, Nanotechnology 23, 294003 (2012)

    Article  Google Scholar 

  36. M.R. Hoffman, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  37. T. Stergiopoulos, A Ghicov, V. Likodimos, D.S. Tsoukleris, J. Kunze, P. Schmuki, P. Falaras, Nanotechnology 19, 235602 (2008)

    Article  CAS  Google Scholar 

  38. A.I. Kontos, V. Likodimos, T. Stergiopoulos, D.S. Tsoukleris, P. Falaras, Chem. Mater. 21, 662 (2009)

    Article  CAS  Google Scholar 

  39. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Science 291, 854 (2001)

    Article  CAS  Google Scholar 

  40. S.D. Yoon, Y. Chen, A. Yang, T.L. Goodrich, X. Zuo, D.A. Arena, K. Ziemer, C. Vittoria, V.G. Harris, J. Phys.: Condens. Matter 18, L355 (2006)

  41. X. Wei, R. Skomski, B. Balamurugan, Z.G. Sun, S. Ducharme, D.J. Sellmyer, J. Appl. Phys. 105, 07C517 (2009)

    Article  Google Scholar 

  42. J.M.D. Coey, Curr. Opin. Solid State Mater. Sci. 10, 83 (2006)

    Article  CAS  Google Scholar 

  43. J.M.D. Coey, K. Wongsaprom, J. Alaria, M. Venkatesan, J. Phys. D 41, 134012 (2008)

    Article  Google Scholar 

  44. A. Yu, G. Wu, F. Zhang, Y. Yang, N. Guan, Catal. Lett. 129, 507 (2009)

    Article  CAS  Google Scholar 

  45. K. Hadjiivanov, Apply. Surf. Sci. 135, 331 (1998)

    Article  CAS  Google Scholar 

  46. K. Bubacz, J. Choina, D. Dolat, E. Borowiak-Palen, D. Moszynski, A.W. Morawski; Mater. Res. Bull. 45, 1085 (2010)

    Article  CAS  Google Scholar 

  47. R.F. Howe, M. Graztel, J. Phys. Chem. 91, 3906 (1987)

    Article  CAS  Google Scholar 

  48. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, J. Mol. Catal. A: Chem. 161, 205 (2000)

    Article  CAS  Google Scholar 

  49. E. Serwicka, Colloids Surf. 13, 287 (1985)

    Article  CAS  Google Scholar 

  50. A.M. Volodin, A.E. Cherkashin, V.S. Zakharenko, React. Kinet. Catal. Lett. 11, 221 (1979)

    Article  CAS  Google Scholar 

  51. C. Naccache, P. Meriaudeau, M. Che, A.J. Tench, Trans. Faraday Soc. 67, 506 (1971)

    Article  CAS  Google Scholar 

  52. J. Strunk, W.C. Vining, A.T. Bell, J. Phys. Chem. C 114, 16937 (2010)

    Article  CAS  Google Scholar 

  53. D.C. Cronemeyer, Phys. Rev. 113, 1222 (1959)

    Article  CAS  Google Scholar 

  54. E. Carter, A.F. Carley, D.M. Murphy, J. Phys. Chem. C 111, 10630 (2007)

    Article  CAS  Google Scholar 

  55. S. Dohshi, M. Anpo, S. Okuda, T. Kojima, Top. Catal. 35, 327 (2005)

    Article  CAS  Google Scholar 

  56. T.L. Thompson, J.T. Yates, Top. Catal. 35, 197 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Zolnierkiewicz.

About this article

Cite this article

Guskos, N., Typek, J., Guskos, A. et al. Magnetic resonance study of annealed and rinsed N-doped TiO2 nanoparticles. cent.eur.j.chem. 11, 1996–2004 (2013). https://doi.org/10.2478/s11532-013-0340-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-013-0340-2

Keywords

Navigation