Skip to main content
Log in

Assessment of elemental contamination in the bottom sediments from a dam reservoir using a sequential extraction technique and chemometric analysis

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

The concentration of elements in sediments is an important aspect of the quality of water ecosystems. The element concentrations in bottom sediments from Goczalkowice Reservoir, Poland, were investigated to determine the levels, accumulation and distribution of elements; to understand the contamination and potential toxicity of elements; and to trace the possible source of pollution. Sediments were collected from 8 sampling points. The functional speciation, mobility and bioavailability of elements were evaluated by means of modified Tessier sequential extraction. The element contents were measured by optical emission spectrometry with inductively coupled plasma. The experimental results were analyzed using chemometric methods such as principal component analysis and cluster analysis to elucidate the metal distributions, correlations and associations. The highest concentrations of most elements were found at the center of the reservoir. The distribution of metals in the individual fractions was varied. To assess the extent of anthropogenic impact indices, contamination factor, degree of contamination, metal pollution index and risk assessment code were applied. The calculated factors showed the highest contamination factor and the ability of chromium to be released from sediments. The degree of contamination showed that the area is characterized by a very high contamination. Strontium and manganese showed high potential ecological risk for sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Bojakowska, T. Gliwicz, G. Sokołowska, Results of geochemical monitoring of bottom sediments from Poland between 1996–1997 (State Inspectorate for Environmental Protection, Environmental Monitoring Library, Warsaw, 1998) (in Polish)

    Google Scholar 

  2. J. Zerbe, T. Sobczyński, J. Siepak, Ecology and Technology 15, 7 (1995) (in Polish)

    Google Scholar 

  3. T. Sobczyński, J. Siepak, In: J. Siepak (Ed.), Speciation analysis of metals in water and sediment samples (Adam Mickiewicz University Press, Poznan, 1998) 67 (in Polish)

  4. J. Zerbe, T. Sobczyński, H. Elbanowska, J. Siepak, Pol. J. Environ. Stud. 8, 331 (1999)

    CAS  Google Scholar 

  5. D.J. McCauley, G.M. DeGraeve, T.K. Linton, Environ. Sci. Policy 3, 133 (2000)

    Article  Google Scholar 

  6. C.A. Atkinson, D.F. Jolley, S.L. Simpson, Chemosphere 69, 1428 (2007)

    Article  CAS  Google Scholar 

  7. J. Kwapuliński, D. WiechuŁa, In: L. Pawłowski, M.R. Dudzińska (Ed.), Chemistry in Environmental Protection (Lublin Polytechnic Press, Lublin, 1993) 142 (in Polish)

  8. M. Kersten, U. Förstner, In: A.M. Ure, C.M. Davidson (Ed.), Chemical Speciation in the Environment (Chapman & Hall, London, 1995) 234

  9. A. Hulanicki, In: J. Siepak (Ed.), Speciation analysis of metals in water and sediment samples (Adam Mickiewicz University Press, Poznan, 1998) 7 (in Polish)

  10. A. Tessier, P.G.C. Cambell, M. Bisson, Anal. Chem. 51, 844 (1979)

    Article  CAS  Google Scholar 

  11. J.R. Bacon, Ch.M. Davidson, Analyst 133, 25 (2008)

    Article  CAS  Google Scholar 

  12. C.R.M. Rao, A. Sahuquillo, J.F. Lopez Sanchez, Water Air Soil Pollut. 189, 291 (2008)

    Article  CAS  Google Scholar 

  13. M.S. Masoud, T.O. Said, G. El Zokm, M.A. Shreadah, AJBAS 6, 44 (2012)

    CAS  Google Scholar 

  14. C.K. Jain, Water Res. 38, 569 (2004)

    Article  CAS  Google Scholar 

  15. A.N.M. Pappoe, E.K.A. Afrifa, F.A. Armah, IJAST 1, 37 (2011)

    Google Scholar 

  16. V. Simeonov, L. Wolska, A. Kuczynska, J. Gurwin, S. Tsakovski, M. Protasowicki, J. Namiesnik, TrAC 26, 323 (2007)

    CAS  Google Scholar 

  17. H. Zeng, J. Wu, Int. J. Environ. Res. Public Health 10, 793 (2013)

    Article  CAS  Google Scholar 

  18. S. Tsakovski, B. Kudlak, V. Simeonov, L. Wolska, G. Garcia, J. Namiesnik, Anal. Chim. Acta 719, 16 (2012)

    Article  CAS  Google Scholar 

  19. S. Tsakovski, V. Simeonov, J. Chemomet. 25, 254 (2011)

    Article  CAS  Google Scholar 

  20. S. Tsakovski, B. Kudlak, V. Simeonov, L. Wolska, J. Namiesnik, Anal. Chim. Acta 631, 142 (2009)

    Article  CAS  Google Scholar 

  21. S. Wold, K. Esbensen, P. Geladi, Chemomet. Intell. Lab. Syst. 2, 37 (1987)

    Article  CAS  Google Scholar 

  22. I.T. Jollife, Principal Component Analysis (Springer-Verlag, New York, 2002)

    Google Scholar 

  23. H. Abdi, L.J. Williams, Wiley Interdisciplinary Reviews: Computational Statistics 2, 433 (2010)

    Article  Google Scholar 

  24. B.M.G. Vandeginste, D.L. Massart, L.M.C. Buydens, S. de Jong, P.J. Lewi, J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics (Elsevier, Amsterdam, 1998) Part B

    Google Scholar 

  25. W. Wu, D.L. Massart, S. de Jong, Chemomet. Intell. Lab. Syst. 36, 165 (1997)

    Article  CAS  Google Scholar 

  26. W. Wu, D.L. Massart, S. de Jong, Chemomet. Intell. Lab. Syst. 37, 271 (1997)

    Article  CAS  Google Scholar 

  27. K. Loska, D. WiechuŁa, Chemosphere 51, 723 (2003)

    Article  CAS  Google Scholar 

  28. E. de Andrade Passos, J.C. Alves, I.S. dos Santos, J. do Patrocínio H. Alves, C.A.B. Garcia, A.C. Spinola Costa, Microchem. J. 96, 50 (2010)

    Article  CAS  Google Scholar 

  29. W. Sun, L. Sang, B. Jiang, J. Soil Sediment 12, 1649 (2012)

    Article  CAS  Google Scholar 

  30. I. Stanimirova, M. Polowniak, R. Skorek, A. Kita, E. John, F. Buhl, B. Walczak, Talanta 74, 153 (2007)

    Article  CAS  Google Scholar 

  31. D.L. Massart, L. Kaufman, The Interpretation of Analytical Data by the Use of Cluster Analysis (Wiley, New York, 1983)

    Google Scholar 

  32. W. Vogt, D. Nagel, H. Sator, Cluster Analysis in Clinical Chemistry; A Model (Wiley, New York, 1987)

    Google Scholar 

  33. J. Morillo, J. Usero, I. Gracia, Environ. Int. 28, 263 (2002)

    Article  CAS  Google Scholar 

  34. A. Smoliński, B. Walczak, J.W. Einax, Chemomet. Intell. Lab. Syst. 64, 45 (2002)

    Article  Google Scholar 

  35. L. Kaufman, P. Rousseeuw, Finding Groups in Data (Wiley & Sons, New York, 1990)

    Book  Google Scholar 

  36. J. Abonyi, B. Feil, Cluster analysis for data mining and system identification (Birkhäuser, Basel, 2007)

    Google Scholar 

  37. L. Hakanson, Water Res. 14, 975 (1980)

    Article  Google Scholar 

  38. H.H.H. Ahdy, A. Khaled, Aust. J. Basic & Appl. Sci. 3, 3330 (2009)

    CAS  Google Scholar 

  39. G. Perin, L. Craboledda, M. Lucchese, R. Cirillo, L. Dotta, M.L. Zanette, A.A. Orio, In: T.D. Lekkas (Ed.), Heavy Metal in the Environment (CEP Consultants, Edinburg, 1985) vol. 2, 454

  40. K.P. Singh, D. Mohan, V. Singh, A. Malik, J. Hydrol. 312, 14 (2005)

    Article  CAS  Google Scholar 

  41. K. Nemati, N.K. Abu Bakar, M.R. Abas, E. Sobhanzadeh, J. Hazard. Mater. 192, 402 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzena Dabioch.

About this article

Cite this article

Dabioch, M., Kita, A., Zerzucha, P. et al. Assessment of elemental contamination in the bottom sediments from a dam reservoir using a sequential extraction technique and chemometric analysis. cent.eur.j.chem. 11, 1981–1995 (2013). https://doi.org/10.2478/s11532-013-0334-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-013-0334-0

Keywords

Navigation