Skip to main content
Log in

Spatial variations in the distribution of trace ionic impurities in the water-steam cycle in a thermal power plant based on a multivariate statistical approach

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

In this study, a multivariate statistical approach was used to identify the key variables responsible for process water quality in a power plant. The ion species that could cause corrosion in one of the major thermal power plants (TPP) in Serbia were monitored. A suppressed ion chromatographic (IC) method for the determination of the target anions and cations at trace levels was applied. In addition, some metals important for corrosion, i.e., copper and iron, were also analysed by the graphite furnace atomic absorption spectrophotometric (GFAAS) method. The control parameters, i.e., pH, dissolved oxygen and silica, were measured on-line. The analysis of a series of representative samples from the TPP Nikola Tesla, collected in different plant operation modes, was performed. Every day laboratory and on-line analysis provides a large number of data in relation to the quality of water in the water-steam cycle (WSC) which should be evaluated and processed. The goal of this investigation was to apply multivariate statistical techniques and choose the most applicable technique for this case. Factor analysis (FA), especially principal component analysis (PCA) and cluster analysis (CA) were investigated. These methods were applied for the evaluation of the spatial/temporal variations of process water and for the estimation of 13 quality parameters which were monitored at 11 locations in the WSC in different working conditions during a twelve month period. It was concluded that PCA was the most useful method for identifying functional relations between the elements. After data reduction, four main factors controlling the variability were identified. Hierarchical cluster analysis (HCA) was applied for sample differentiation according to the sample location and working mode of the TPP. On the basis of this research, the new design of an optimal monitoring strategy for future analysis was proposed with a reduced number of measured parameters and with reduced frequency of their measurements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Kaiser, J. Riviello, M. Rey, J. Statler, S. Heberling, J. Chromatogr. A 739, 71 (1996)

    Article  CAS  Google Scholar 

  2. H. Lu, Sh. Mou, R. Deng, J. Riviello, Microchem. J. 64, 1 (2000)

    Article  CAS  Google Scholar 

  3. E. Santoyo, S.P. Verma, F. Sandoval, A. Aparicio, R. Garcia, J. Chromatogr. A 949, 281 (2002)

    Article  CAS  Google Scholar 

  4. Z. Lu, Y. Liu, V. Barreto, C. Pohl, N. Avdalovic, R. Joyce, B. Newton, J. Chromatogr. A 956, 129 (2002)

    Article  CAS  Google Scholar 

  5. P. Miskaki, E. Lytras, L. Kousouris, P. Tzoumerkas, Desalination 213, 182 (2007)

    Article  CAS  Google Scholar 

  6. C. Lopez-Moreno, I. Viera, A.M. Urbano, Desalination 261, 111 (2010)

    Article  CAS  Google Scholar 

  7. H. Huang, G.A. Sorial, Chemosphere 64, 1150 (2006)

    Article  CAS  Google Scholar 

  8. R. Wang, N. Wang, M. Ye, Y. Zhu, J. Chromatogr. A 1265, 186 (2012)

    Article  CAS  Google Scholar 

  9. H. Kaasalainena, A. Stefansson, Talanta 85, 1897 (2011)

    Article  Google Scholar 

  10. D.Z. Čičkarić, I. Deršek-Timotić, A. Onjia, Lj. Rajaković, J. Serb. Chem. Soc. 70, 995 (2005)

    Article  Google Scholar 

  11. D.Z. Živojinović, Lj.V. Rajaković, Desalination 275, 17 (2011)

    Article  Google Scholar 

  12. Pressurized Water Reactors Secondary Water Chemistry Guidelines, Revision 6 (EPRI Report 1008224), December, 2004

  13. V.N. Rajakovic-Ognjanovic, D.Z. Zivojinovic, B.N. Grgur, Lj.V. Rajakovic, Appl. Therm. Eng. 31, 119 (2011)

    Article  CAS  Google Scholar 

  14. K.R. Cooper, R.G. Kelly, J. Chromatogr. A 739, 183 (1996)

    Article  CAS  Google Scholar 

  15. D.H. Thomas, M. Rey, P.E. Jackson, J. Chromatogr. A 956, 181 (2002)

    Article  CAS  Google Scholar 

  16. B. De Borba, M. Laikhtman, J. Rohrer, J. Chromatogr. A 995, 143 (2003)

    Article  Google Scholar 

  17. D. Čičkarić, J. Marković, Lj. Rajaković, Water Qual. 2, 14 (2004)

    Google Scholar 

  18. Lj. V. Rajaković, V. Šijački-Žeravčić, P. Stefanović, et al., Corrosion potential of water: Book 2 (Codex, Belgrade, 2002)

    Google Scholar 

  19. Lj.V. Rajaković, J. Kerečki, Hem. Ind. 57, 318 (2003)

    Article  Google Scholar 

  20. D. A. Lytle, M. N. Nadagouda, Corros. Sci. 52, 1927 (2010)

    Article  CAS  Google Scholar 

  21. M. Varol, B. Gokot, A. Bekleyen, B. Sen, Catena 92, 11 (2012)

    Article  CAS  Google Scholar 

  22. M. Cieszynska, M. Wesolowski, M. Bartoszewicz, M. Michalska, Cent. Eur. J. Chem. 9, 265 (2011)

    Article  CAS  Google Scholar 

  23. F. Huang, X. Wang, L. Lou, Z. Zhou, J. Wu, Water Res. 44, 1562 (2010)

    Article  CAS  Google Scholar 

  24. N. Ruggieri, M. Castellano, M. Capello, S. Maggi, P. Povero, Mar. Pollut. Bull. 62, 340 (2011)

    Article  CAS  Google Scholar 

  25. A. Astel, M. Biziuk, A. Przyjazny, J. Namiesnik, Water Res. 40, 1706 (2006)

    Article  CAS  Google Scholar 

  26. I. Stanimirova, M. Połowniak, R. Skorek, A. Kita, E. John, F. Buhl, B. Walczak, Talanta 74, 153 (2007)

    Article  CAS  Google Scholar 

  27. R. Slingsby, R. Kiser, Trends Anal. Chem. 20, 288 (2001)

    Article  CAS  Google Scholar 

  28. E. Gómez-Ordónez, E. Alonso, P. Rupérez, Talanta 82, 1313 (2010)

    Article  Google Scholar 

  29. W.W. Buchberger, Trends Anal. Chem. 20, 296 (2001)

    Article  CAS  Google Scholar 

  30. Standard Methods for the Examination of Water & Wastewater: Centennial Edition, 21st Edition (American Public Health Association, Washington, 2005)

  31. P. Raj Kannel, S. Lee, S. Raj Kanel, S. Pratap Khan, Anal. Chim. Acta 582, 390 (2007)

    Article  Google Scholar 

  32. Y. Ouyang, Water Res. 39, 2621 (2005)

    Article  CAS  Google Scholar 

  33. V. Simeonov, J.A. Stratis, C. Samara, G. Zachariadis, D. Voutsa, A. Anthemidis, et al., Water Res. 37, 4119 (2003)

    Article  CAS  Google Scholar 

  34. T. Kowalkowski, R. Zbytniewski, J. Szpejna, B. Buszewski, Water Res. 40, 744 (2006)

    Article  CAS  Google Scholar 

  35. E. Marengo M.C. Gennaro, E. Robotti, A. Maiocchi, G. Pavese, A. Indaco, A. Rainero, Microchem. J 88, 167 (2008)

    Article  Google Scholar 

  36. S. Razic, A. Onjia, S. Ðogo, L. Slavkovic, A. Popovic, Talanta 67, 233 (2005)

    Article  CAS  Google Scholar 

  37. B. Skrbic, A. Onjia, Food Control 18, 338 (2007)

    Article  CAS  Google Scholar 

  38. K. Hron, M. Jelinkova, P. Filzmoser, R. Kreuziger, P. Bednar, P. Bartak, Talanta 90, 46 (2012)

    Article  CAS  Google Scholar 

  39. A. Przybylowicz, P. Chesy, M. Herman, A. Parczewski, S. Walas, W. Piekoszewski, Cent. Eur. J. Chem. 10(5), 1590 (2012)

    Article  CAS  Google Scholar 

  40. G. Ragno, M. De Luca, G. Ioele, Microchem. J 87, 119 (2007)

    Article  CAS  Google Scholar 

  41. S. Shrestha, F. Kazama, Environ. Modell. Softw 22, 464 (2007)

    Article  Google Scholar 

  42. P.M.S.M. Rodrigues, R. M.M. Rodrigues, B.H.F. Costa, A.A.L. Tavares Martins, J.C.G. Esteves da Silva, Chemometr Intell Lab. 102, 130 (2010)

    Article  CAS  Google Scholar 

  43. F. Grubbs, Technometrics 11(1), 1 (1969)

    Article  Google Scholar 

  44. H. Kaiser, Educ. Psychol. Meas. 20, 141 (1960)

    Article  Google Scholar 

  45. M.S. Bartlett, Journal off the Royal Statistical Society 16(Series B), 296 (1954)

    Google Scholar 

  46. B.F.J. Manly, Multivariate Statistical Methods: A Primer, 3rd edition (Chapman and Hall/CRC, New York, 2005) 75–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Z. Živojinović.

About this article

Cite this article

Živojinović, D.Z., Rajaković-Ognjanović, V.N., Onjia, A.E. et al. Spatial variations in the distribution of trace ionic impurities in the water-steam cycle in a thermal power plant based on a multivariate statistical approach. cent.eur.j.chem. 11, 1456–1470 (2013). https://doi.org/10.2478/s11532-013-0286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-013-0286-4

Keywords

Navigation