Skip to main content
Log in

Potentiometric cholesterol biosensing application of graphene electrode with stabilized polymeric lipid membrane

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

A novel potentiometric cholesterol biosensor has been fabricated through the immobilization of the stabilized polymeric lipid membrane onto graphene electrode. The stabilized polymeric lipid membrane is composed of cholesterol oxidase enzyme and polymerization mixture; which holds paramount influence on the properties of the cholesterol biosensor. The presented biosensor reveals an appreciable reproducibility, good selectivity and high sensing capability with a linear slope curve of ∼64 mV per decade. The strong biocompatibility among stabilized polymeric lipid membranes and human biofluids provides the possibility to use for real blood samples and other biological applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Ikonen, Nat. Rev. Mol. Cell Biol. 9, 125 (2008)

    Article  CAS  Google Scholar 

  2. F.R. Maxfield, I. Tabas, Nature 438 612, (2005)

    Article  CAS  Google Scholar 

  3. M.Q. Israr, J.R. Sadaf, O. Nur, M. Willander, S. Salman, B. Danielsson, Appl. Phys. Lett. 98(25), 253705 (2011)

    Article  Google Scholar 

  4. E. Tamiya, Y. Sugiura, A. Akiyama, I. Karube, Ann. N. Y. Acad. Sci. 613, 396 (1990)

    Article  CAS  Google Scholar 

  5. V. Rajesh, W. Bisht, W. Takashima, K. Kaneto, Biomaterials 26(17), 3683 (2005)

    Article  CAS  Google Scholar 

  6. S.P. Singh, A. Chaubey, B.D. Malhotra, Anal. Chim. Acta 502, 229 (2004)

    Article  CAS  Google Scholar 

  7. H.Y. Wang, S.L. Mu, Sens. Actuators B: Chem. 56, 22 (1999)

    Article  CAS  Google Scholar 

  8. J. Janata, M. Josowicz, D.M. DeVaney, Anal. Chem. 66, 207R (1994)

    Article  CAS  Google Scholar 

  9. D.P. Nikolelis, D.A. Drivelos, M.G. Simantiraki, S. Koinis, Anal. Chem. 76(8), 2174 (2004)

    Article  CAS  Google Scholar 

  10. D.P. Nikolelis, G. Theoharis, Bioelectrochem. 59(1), 107 (2003)

    Article  CAS  Google Scholar 

  11. D.P. Nikolelis, M.G. Simantiraki, C.G. Siontorou, T. Toth, Anal. Chim. Acta 537, 169 (2005)

    Article  CAS  Google Scholar 

  12. D.P. Nikolelis, G. Raftopoulou, G.-P. Nikoleli, M. Simantiraki, Electroanalysis 18, 2467 (2006)

    Article  CAS  Google Scholar 

  13. D.P. Nikolelis, M. Mitrokosta, Biosens. & Bioelectr. 17, 565 (2002)

    Article  CAS  Google Scholar 

  14. D.P. Nikolelis, C.G. Siontorou, Anal. Chem. 67(5), 936 (1995)

    Article  CAS  Google Scholar 

  15. D.P. Nikolelis, T. Hianik, G.-P. Nikoleli, Electroanalysis 22(23), 2747 (2010)

    Article  CAS  Google Scholar 

  16. D.P. Nikolelis, G. Raftopoulou, P. Chatzigeorgiou, G.-P. Nikoleli, K. Viras, Sens. Actuators B 130, 577 (2008)

    Article  CAS  Google Scholar 

  17. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  CAS  Google Scholar 

  18. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol. 3, 563 (2008)

    Article  CAS  Google Scholar 

  19. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007)

    Article  CAS  Google Scholar 

  20. G.E. Romanos, V. Likodimos, R.R.N. Marques, T.A. Steriotis, S.K. Papageorgiou, J.L. Faria, J.L. Figueiredo, A.M.T. Silva, P. Falaras, J. Phys. Chem. C 115, 8534 (2011)

    Article  CAS  Google Scholar 

  21. L. Charpentier, I.E. Murr, Anal. Chim. Acta. 318, 89 (1995)

    Article  CAS  Google Scholar 

  22. A. L. Gopalan, K.-P. Lee, D. Ragupathy, Biosens. Bioelectron. 24(7), 2211, (2009).

    Article  CAS  Google Scholar 

  23. B. Ivanyi, E. Kemeny, E. Szederkenyi, F. Marofka, P. Szenohradszky, Mod Pathol 14(12), 1200 (2001)

    Article  CAS  Google Scholar 

  24. A. Townshed, (Ed.), Encyclopedia of Analytical Chemistry (Academic Press Limited, London, 1995) Vol. 4, p. 2520 and Vol. 9, p. 5

    Google Scholar 

  25. M. K. Ram, P. Bertoncello, H. Ding, S. Paddeu, C. Nicolini, Biosens. Bioelectron. 16, 849 (2001)

    Article  CAS  Google Scholar 

  26. G. Li, J.M. Liao, G.Q. Hu, N.Z. Ma, P.J. Wu, Biosens. Bioelectron. 20, 2140 (2005)

    Article  CAS  Google Scholar 

  27. A. Kumar Basu, P. Chattopadhyay, U. Roychoudhuri, R. Chakraborty, Bioelectrochemistry 70, 375 (2007)

    Article  CAS  Google Scholar 

  28. G.-P. Nikoleli, M.Q. Israr, N. Tzamtzis, D.P. Nikolelis, M. Willander, N. Psaroudakis, Electroanalysis 24(6), 1285 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios P. Nikolelis.

About this article

Cite this article

Nikoleli, GP., Ibupoto, Z.H., Nikolelis, D.P. et al. Potentiometric cholesterol biosensing application of graphene electrode with stabilized polymeric lipid membrane. cent.eur.j.chem. 11, 1554–1561 (2013). https://doi.org/10.2478/s11532-013-0285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-013-0285-5

Keywords

Navigation