Central European Journal of Chemistry

, Volume 11, Issue 8, pp 1352–1359 | Cite as

The first transition metal iodato peroxido complex: the synthesis, vibrational spectra and crystal structure from powder diffraction data of K3[V2O2(O2)4(IO3)]·H2O

  • Mária Šimuneková
  • Peter Schwendt
  • Jana ChrappováEmail author
  • Ľubomir Smrčok
  • Radovan Černý
  • Wouter van Beek
Research Article


The first transition metal iodato peroxido complex, K3[V2O2(O2)4(IO3)]·H2O (I), was prepared by crystallization from the KVO3 — KIO3 — H2O2 — H2O — ethanol (HNO3) solution. The dinuclear anion is immediately decomposed in aqueous solution; the 51V NMR spectrum exhibits signals corresponding to [VO(O2)2(H2O)], [V2O2(OH)(O2)4]3− and H2VO4 species only. The IR and Raman spectra contain all characteristic bands of the VO(O2)2 group and the coordinated IO3 ligand. Based on the positions of bands assigned to the vibrations of the VO(O2)2 groups a pentagonal pyramidal arrangement around the vanadium atoms can be supposed. The crystal structure was solved from X-ray synchrotron powder data by direct space method and refined by energy minimization in the solid state employing a hybrid PBE0 functional. This crystal and molecular structure, has confirmed the presence of hexacoordinated vanadium atoms and revealed asymmetric dinuclear structure of the [V2O2(O2)4(IO3)]3− ion. The coordination spheres of vanadium atoms are different — the IO3 anion is coordinated only to one vanadium center. A thermal analysis of the complex confirmed the presence of water molecules in the crystal structure and revealed a considerable stability of the dehydrated complex.


Iodato peroxidovanadium complex IR and Raman spectra Crystal structure from powder DFT PBE0 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1](a)
    H. Mimoun, L. Saussine, E. Daire, M. Postel, J. Fischer, R Weiss, J. Am. Chem. Soc. 105, 3101 (1983)CrossRefGoogle Scholar
  2. [1](b)
    V. Conte, B. Floris, Dalton Trans. 40, 1419 (2011)CrossRefGoogle Scholar
  3. [2]
    A.S. Tracey, G.R. Wilsky, E.S. Takeuchi, Vanadium. Chemistry, Biochemistry, Pharmacology and Practical Applications (CRC Press, Taylor & Francis Group, Boca Raton, 2007) 183Google Scholar
  4. [3](a)
    D. Rehder, Bioinorganic Vanadium Chemistry (John Willey & Sons, Chichester 2008) 105CrossRefGoogle Scholar
  5. [3](b)
    D.C. Crans, J.J. Smee, E. Gaidamaustas, Y. Yang, Chem. Rev. 104, 849 (2004)CrossRefGoogle Scholar
  6. [4]
    P. Schwendt, P. Petrovič, D. Úškert, Z. Anorg. All. Chem. 466, 232 (1980)CrossRefGoogle Scholar
  7. [5]
    R. Stomberg, Acta Chem. Scand. A 39, 125 (1985)Google Scholar
  8. [6]
    P. Schwendt, J. Tyršelová, F. Pavelčík, Inorg. Chem. 34, 1964 (1995)CrossRefGoogle Scholar
  9. [7]
    P. Schwendt, A. Oravcová, J. Tyršelová, F. Pavelčík, Polyhedron 15, 4507 (1996)CrossRefGoogle Scholar
  10. [8]
    C.F. Sun, C.L. Hu, X. Xu, B.P. Yang, J.G. Mao, J. Am. Chem. Soc. 133, 5561 (2011)CrossRefGoogle Scholar
  11. [9]
    B.P. Yang, C.L. Hu, C.F. Sun, J.H. Zhang, J.G. Mao, Chem. Mater. 22, 1545 (2010)CrossRefGoogle Scholar
  12. [10]
    W.C. Bray, H.A. Liebhafsky, J. Am. Chem. Soc. 53, 38 (1931)CrossRefGoogle Scholar
  13. [11]
    ?. Treindl, R.M. Noyes, J. Phys. Chem. 97, 11354 (1993)CrossRefGoogle Scholar
  14. [12]
    P. Antal, J. Tatiersky, P. Schwendt, Z. Žák, R. Gyepes, J. Mol. Struct. 1032, 240 (2013)CrossRefGoogle Scholar
  15. [13]
    J.W. Visser, J. Appl. Crystallogr. 2, 89 (1969)CrossRefGoogle Scholar
  16. [14]
    A.Le Bail, H. Duroy, J.L. Fourquet, Mater. Res. Bull. 23, 447 (1988)CrossRefGoogle Scholar
  17. [15]
    J. Rodriguez-Carvajal, Physica B 192, 55 (1993)CrossRefGoogle Scholar
  18. [16]
    V. Favre-Nicolin, R. Černý, J. Appl. Crystallogr. 35, 734 (2002)CrossRefGoogle Scholar
  19. [17]
    V. Favre-Nicolin, R. Černý, Z. Kristallogr. 219, 847 (2004)CrossRefGoogle Scholar
  20. [18]
    G. Kresse, J. Hafner, Phys. Rev. B48, 13115 (1993)Google Scholar
  21. [19]
    G. Kresse, J. Furthmüller, Phys. Rev. B54, 11169 (1996)Google Scholar
  22. [20]
    G. Kresse, J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  23. [21]
    J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105, 9982 (1996)CrossRefGoogle Scholar
  24. [22]
    P.E. Blöchl, Phys. Rev. B50, 17953 (1994)Google Scholar
  25. [23]
    G. Kresse, J. Joubert, Phys. Rev. B59, 1758 (1999)Google Scholar
  26. [24]
    G. Kresse, J. Hafner, J. Phys. Condens. Mat. 6, 8245 (1994)CrossRefGoogle Scholar
  27. [25]
    Xue-An Chen, Li Zhang, Xin-An Chang, He-Gui Zang, Wei-Qiang Xiao, Acta Crystallogr. C62, i76 (2006)Google Scholar
  28. [26]
    A. Le Bail, Ľ. Smrčok, Powder Diffr. 26, 321 (2011)CrossRefGoogle Scholar
  29. [27]
    M. Oszajca, Ľ. Smrčok, H. Pálková, W. Łasocha, J. Mol. Struct. 1021, 70 (2012)CrossRefGoogle Scholar
  30. [28]
    Ľ. Smrčok, V. Jorík, E. Scholtzová and V. Milata, Acta Crystallogr. B63, 477 (2007)Google Scholar
  31. [29]
    Ľ. Smrčok, M. Brunelli, M. Boča and M. Kucharík, J. Appl. Crystallogr. 41, 634 (2008)CrossRefGoogle Scholar
  32. [30]
    Ľ. Smrčok, B. Bitschnau, Y. Filinchuk, Cryst. Res. Technol. 44 978 (2009)CrossRefGoogle Scholar
  33. [31]
    Ľ. Smrčok, R. Černý, M. Boča, I. Macková, B. Kubíková, Acta Crystallogr. C 66, I16 (2010)CrossRefGoogle Scholar
  34. [32]
    A.L. Spek, Acta Crystallogr. D65, 148 (2009)Google Scholar
  35. [33]
    M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, H. Wondratschek, Acta Crystallogr. A62, 115 (2006)Google Scholar
  36. [34]
    M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek, Z. Kristallogr. 221, 15 (2006)CrossRefGoogle Scholar
  37. [35]
    M. I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasci, G. de la Flor, A. Kirov, Bulg. Chem. Commun. 43 183 (2011)Google Scholar
  38. [36]
    D. Rehder, Bioinorganic Vanadium Chemistry (John Willey & Sons, Chichester 2008) 18CrossRefGoogle Scholar
  39. [37]
    A.S. Tracey, G.R. Wilsky, E.S. Takeuchi, Vanadium. Chemistry, Biochemistry, Pharmacology and Practical Applications (CRC Press, Taylor & Francis Group, Boca Raton, 2007) 83Google Scholar
  40. [38]
    P. Schwendt, M. Sýkora, Collect. Czech. Chem. Commun. 55, 1485 (1990)CrossRefGoogle Scholar
  41. [39]
    J. Chrappová, P. Schwendt, M. Sivák, M. Repiský, V.G. Malkin, J. Marek, Dalton Trans. 465 (2009)Google Scholar
  42. [40]
    V.L. Pavlov, A.V. Melezhik, Zh. Neorg. Khim. 20, 678 (1975)Google Scholar
  43. [41]
    P. Schwendt, M. Pisárčik, Chem. Papers 42, 305 (1988)Google Scholar
  44. [42]
    P. Schwendt, K. Volka, M. Suchánek, Spectrochim. Acta 44 A, 839 (1988)Google Scholar
  45. [43]
    J. Chrappová, P. Schwendt, J. Marek, J. Fluorine Chem. 126, 1297 (2005)CrossRefGoogle Scholar
  46. [44]
    B.W. Lucas, Acta Cryst. C40, 1989 (1984)Google Scholar
  47. [45]
    A.E. Lapshin, Y.I. Smolin, Y.F. Shepelev, D. Gyepesová, P. Schwendt, Acta Crystallogr. C45, 1477 (1989)Google Scholar
  48. [46]
    A.E. Lapshin, Y.I. Smolin, Y.F. Shepelev, P. Schwendt, D. Gyepesová, Acta Crystallogr. C46, 738 (1990)Google Scholar
  49. [47]
    J. Podlahová, J. Loub, F. Pechar, V. Petříček, Acta Crystallogr. C40, 1999 (1984)Google Scholar
  50. [48]
    D. Begin, F.W.B. Einstein, J. Field, Inorg. Chem. 8, 1785 (1975)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Mária Šimuneková
    • 1
  • Peter Schwendt
    • 1
  • Jana Chrappová
    • 1
    Email author
  • Ľubomir Smrčok
    • 2
  • Radovan Černý
    • 3
  • Wouter van Beek
    • 4
  1. 1.Department of Inorganic Chemistry, Faculty of Natural SciencesComenius University in BratislavaBratislava 4Slovak Republic
  2. 2.Institute of Inorganic ChemistrySlovak Academy of SciencesBratislavaSlovak Republic
  3. 3.Laboratory of Crystallography, DPMC-MaNEPUniversity of GenevaGenevaSwitzerland
  4. 4.Swiss-Norwegian Beam Lines at ESRFGrenobleFrance

Personalised recommendations