Skip to main content
Log in

Evaluation of the ONIOM(B3PW91:HF) hybrid method for modeling butyltin chlorides

  • Short Communication
  • Published:
Central European Journal of Chemistry

Abstract

The ONIOM(B3PW91:HF) hybrid method has been evaluated for the purposes of modeling butyltin chlorides, XnSnCl4-n (X = n-butyl, sec-butyl, isobutyl, tert-butyl; n = 1, 2, 3). Three different partitioning schemes of a molecule within ONIOM(B3PW91:HF) were taken into account. For each of these partitioning schemes, conformational analyses of the XnSnCl4-n molecules were performed and then several molecular properties of the resulting rotamers were calculated. The values of molecular properties obtained by ONIOM(B3PW91:HF) were compared in a statistical manner with the reference values calculated by B3PW91. A careful choice of partitioning scheme for XnSnCl4-n allowed ONIOM(B3PW91:HF) to achieve a significant saving in computational cost, together with a relatively small decrease in the accuracy of the XnSnCl4-n molecular properties routinely obtained from conformational analysis (structural parameters, etc.). Unfortunately, the hybrid method turned out to be ineffective in reproducing the 1H, 13C and 119Sn NMR chemical shifts in XnSnCl4-n accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A.G. Davies, Organotin Chemistry, 2nd edition (Wiley-VCH, Weinheim, 2004)

    Book  Google Scholar 

  2. A.G. Davies, M. Gielen, K.H. Pannell, E.R.T. Tiekink (Eds.), Tin Chemistry: Fundamentals, Frontiers, and Applications (John Wiley & Sons Ltd, Chichester, 2008)

    Google Scholar 

  3. A. Chemin, H. Deleuze, B. Maillard, J. Appl. Polymer Sci. 79, 1297 (2001)

    Article  CAS  Google Scholar 

  4. M.D. Allendorf, Electrochem. Soc. Interface 10, 34 (2001)

    CAS  Google Scholar 

  5. M.D. Allendorf, C.F. Melius, J. Phys. Chem. A 109, 4939 (2005)

    Article  CAS  Google Scholar 

  6. S. Osmekhin, A. Caló, V. Kisand, E. Nõmmiste, H. Kotilainen, H. Aksela, S. Aksela, Int. J. Mass Spectrom. 273, 48 (2008)

    Article  CAS  Google Scholar 

  7. T. Akatsuka, M. Ushiro, S. Nagamatsu, Y. Takahashi, T. Fujikawa, Polyhedron 27, 3146 (2008)

    Article  CAS  Google Scholar 

  8. P. Matczak, J. Mol. Struct.: THEOCHEM 950, 83 (2010)

    Article  CAS  Google Scholar 

  9. Z. Li, L. Liu, Y. Fu, Q.-X. Guo, J. Mol. Struct.: THEOCHEM 757, 69 (2005)

    Article  CAS  Google Scholar 

  10. M. Caricato, T. Vreven, G.W. Trucks, M.J. Frisch, K.B. Wiberg, J. Chem. Phys. 131, 134105 (2009)

    Article  Google Scholar 

  11. Y. Tantirungrotechai, S. Roddecha, K. Punyain, P. Toochinda, J. Mol. Struct.: THEOCHEM 893, 98 (2009)

    Article  CAS  Google Scholar 

  12. R.D.J. Froese, K. Morokuma, In: P.v.R. Schleyer, N.L. Allinger, P.A. Kollman, T. Clark, H.F. Schaefer III, J. Gasteiger, P.R. Schreiner (Eds.), Encyclopedia of Computational Chemistry (Wiley, Chichester, 1998) 1244

  13. M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, S. Sieber, K. Morokuma, J. Phys. Chem. 100, 19357 (1996)

    Article  CAS  Google Scholar 

  14. T. Vreven, K. Morokuma, J. Comput. Chem. 21, 1419 (2000)

    Article  CAS  Google Scholar 

  15. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  16. J.P. Perdew, In: P. Ziesche, H. Eschrig (Eds.), Electronic Structure of Solids’91 (Akademie Verlag, Berlin, 1991) 11

  17. W. Kutzelnigg, U. Fleischer, M. Schindler, In: P. Diehl, E. Fluck, H. Günther, R. Kosfeld, J. Seelig (Eds.), NMR Basic Principles and Progress, Volume 23 (Springer, Berlin, 1991) 165

  18. R. Vivas-Reyes, F. De Proft, M. Biesemans, R. Willem, P. Geerlings, J. Phys. Chem. A 106, 2753 (2002)

    Article  CAS  Google Scholar 

  19. P. Matczak, Main Group Met. Chem. 31, 189 (2008)

    Article  CAS  Google Scholar 

  20. W.J. Kinart, C.M. Kinart, M. Kozak, A. Kinart, M. Sendecki, P. Matczak, Comb. Chem. High Throughput Screen. 12, 704 (2009)

    Article  CAS  Google Scholar 

  21. P. Matczak, Main Group Met. Chem. 32, 309 (2009)

    Article  CAS  Google Scholar 

  22. A.C. de Dios, Magn. Reson. Chem. 34, 773 (1996)

    Article  Google Scholar 

  23. P. Avalle, R.K. Harris, P.B. Karadakov, P.J. Wilson, Phys. Chem. Chem. Phys. 4, 5925 (2002)

    Article  CAS  Google Scholar 

  24. S. Huzinaga, J. Chem. Phys. 42, 1293 (1965)

    Article  Google Scholar 

  25. P.B. Karadakov, K. Morokuma, Chem. Phys. Lett. 317, 589 (2000)

    Article  CAS  Google Scholar 

  26. R. Ditchfield, Mol. Phys. 27, 789 (1974)

    Article  CAS  Google Scholar 

  27. K. Ruud, T. Helgaker, K.L. Bak, P. Jørgensen, H.J.A. Jensen, J. Chem. Phys. 99, 3847 (1993)

    Article  CAS  Google Scholar 

  28. A. Bagno, G. Casella, G. Saielli, J. Chem. Theory Comput. 2, 37 (2006)

    Article  CAS  Google Scholar 

  29. A.G. Davies, A. Sella, R. Sivasubramaniam, J. Organomet. Chem. 691, 3556 (2006)

    Article  CAS  Google Scholar 

  30. M.J. Frisch et al., Gaussian 03, Revision E.01 (Gaussian, Inc., Wallingford, CT, 2004)

    Google Scholar 

  31. G. Schaftenaar, J.H. Noordik, J. Comput. Aided Mol. Des. 14, 123 (2000)

    Article  CAS  Google Scholar 

  32. J.J. Burke, P.C. Lauterbur, J. Am. Chem. Soc. 83, 326 (1961)

    Article  CAS  Google Scholar 

  33. H. Nakatsuji, T. Inoue, T. Nakao, J. Phys. Chem. 96, 7953 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Matczak.

Electronic supplementary material

About this article

Cite this article

Matczak, P. Evaluation of the ONIOM(B3PW91:HF) hybrid method for modeling butyltin chlorides. cent.eur.j.chem. 11, 1257–1263 (2013). https://doi.org/10.2478/s11532-013-0261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-013-0261-0

Keywords

Navigation