Skip to main content
Log in

L-leucinium perchlorate: new molecular complex with nonlinear optical properties. Vibrational, calorimetric and theoretical studies

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

On the basis of prior X-ray crystallographic results published by J. Janczak and G. Perpetuo, detailed vibrational studies were performed. The FT-IR and Raman spectra at ambient temperature were measured. The NLO properties were determined with the Kurtz-Perry experiment.

Theoretical vibrational spectra were calculated. A detailed potential energy distribution (PED) analysis was performed. Assignments of observed bands were made. On the basis of these results, the behaviour of hydrogen bonds in the investigated compound was analysed and discussed. The equilibrium geometry of L-leucinium perchlorate was obtained. The results were compared with experimental X-ray data. The DFT formalism was used in theoretical studies.

Detailed TDDFT study of hyperpolarizbility of first and second order for the investigated molecule was performed. Results were compared with experiments. Theoretical population analysis was used to determine the local electron density and local charges in investigated molecule. Differential scanning calorimetric study (DSC) was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.G. Koreneva, V.F. Zolin, B.L. Davydov, Nonlinear Optics of Molecular Crystals (Moscow, Nauka, 1985) (in Russian)

    Google Scholar 

  2. J.F. Nicoud, R.J. Tweig, In: D.S. Chemla, J. Zyss (Eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1 (Academic Press, London, 1987)

  3. D. Xu, M. Jiang, Shandong Daxue Xuebao, Ziran Kexueban, 23, 103 (1988); Chem. Abstr. 110, 67141 (1989)

    CAS  Google Scholar 

  4. D. Eimerl, S. Velsko, L. David, F. Wang, G. Loiacono, G. Kennedy IEEE, J. Quantum Electron 25, 179 (1989)

    Article  CAS  Google Scholar 

  5. A. Yokotani, T. Sasaki, K. Fujioka, S. Nakai, C. Yamanaka, J. Cryst. Growth 99, 815 (1990)

    Article  CAS  Google Scholar 

  6. S. Dhanuskodi, P.A. Angeli Mary, K. Vasantha, Spectrochim. Acta A59, 927 (2003)

    Google Scholar 

  7. G. Dhanaraj, T. Shripathi, H. L. Bhat, J. Crystal. Growth 113, 456 (1991)

    Article  CAS  Google Scholar 

  8. S.B. Monaco, L.E. Davis, S.P. Velsko, F.T. Wang, D. Eirmel, A. Zalkin, J. Cryst. Growth 85, 252 (1987)

    Article  CAS  Google Scholar 

  9. A.M. Petrosyan, R.P. Sukiasyan, S.S. Terzyan, V.M. Burbelo, Acta Cryst. B55, 221 (1999)

    CAS  Google Scholar 

  10. S. Haussühl, Z. Kristallogr. 188, 311 (1989)

    Article  Google Scholar 

  11. G. Ashaak, Ferroelectrics 104, 147 (1990)

    Article  Google Scholar 

  12. I. Nemec, Z. Micka, J. Mol. Struct. 563–564, 295 (2001)

    Article  Google Scholar 

  13. K. Rajagopal, R.V. Krishnakumar, M.S. Nandhini, R. Malathi, S.S. Rajan, S. Natarajan, Acta. Cryst E 59, o878 (2003)

    Article  CAS  Google Scholar 

  14. M. Anbuchezhiyan, S. Ponnusamy, C. Muthamizhchelvan, Optoelectronics and Advanced Materials — Rapid Communications 3(11), 1161 (2009)

    CAS  Google Scholar 

  15. K. Anitha, S. Athimoolam, R. K. Rajaram, Acta Cryst. E61, o1604 (2005)

    Google Scholar 

  16. J. Janczak, G. J. Perpetuo, Acta Cryst. C 63,part 2, o117 (2007)

    Article  CAS  Google Scholar 

  17. G. Fogarasi, P. Pulay, In: J.R. During (Ed.), Vibrational Spectra and Structure (Elsevier, New York, 1985) Vol. 13

  18. W. Zierkiewicz, D. Michalska, Th. Zeegers-Huyskens, J. Phys. Chem. A104, 11685 (2000)

    Article  Google Scholar 

  19. S. Kucharski, J.R. Bull. Polish. Acad. Sci. (Chem.) 45, 319 (1997)

    CAS  Google Scholar 

  20. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)

    Article  CAS  Google Scholar 

  21. H. Siebert, Z. Anorg. Allg. Chem. 275, 225 (1954)

    Article  CAS  Google Scholar 

  22. M. Drozd, M.K. Marchewka, Spectrochim. Acta A 64, 6 (2006)

    Article  CAS  Google Scholar 

  23. S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1968)

    Article  CAS  Google Scholar 

  24. H.M. Badawi, J. Mol. Struct. 984, 209 (2010)

    Article  CAS  Google Scholar 

  25. R.M. Dreizler, E.K.U. Gross, Density Functional Theory An Approach to the Quantum Many-Body Problem (Springer-Verlag, Berlin, Heidelberg, 1990)

    Book  Google Scholar 

  26. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York/Clarendon Press, Oxford, 1989)

    Google Scholar 

  27. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, 2nd Edition (Wiley-VCH, Weinheim, 2001)

    Book  Google Scholar 

  28. D.C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems (John Wiley and Sons, New York, 2001)

    Google Scholar 

  29. J.P. Lowe, K.A. Peterson, Quantum Chemistry (Elsevier, Amsterdam, 2006)

    Google Scholar 

  30. D.W. Rogers, Computational Chemistry Using the PC (Wiley-Interscience, New York, 2003)

    Book  Google Scholar 

  31. K.I. Ramachandran, G. Deepa, K. Namboori, Computational Chemistry and Molecular Modeling Principles and Applications (Springer-Verlag, Berlin, Heidelberg, 2008)

    Google Scholar 

  32. L. Piela, Ideas of Quantum Chemistry (Elsevier, Amsterdam, 2007)

    Google Scholar 

  33. M. Mueller, Fundamentals of Quantum Chemistry, Molecular Spectroscopy and Modern Electronic Structure Computations (Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 2001)

    Google Scholar 

  34. C.J. Cramer, Essentials of Computational Chemistry, Theories and Models, 2nd edition (John Wiley and Sons, Chichester, 2004)

    Google Scholar 

  35. J.B. Foresman, AE Frisch, Exploring Chemistry With Electronic Structure Methods: A Guide to Using Gaussian (Gaussian, Inc., Pittsburgh PA, 1996)

    Google Scholar 

  36. M.K. Marchewka, M. Drozd, A. Pietraszko, Mat. Sci. Eng. B100, 225 (2003)

    CAS  Google Scholar 

  37. M. Drozd, M.K. Marchewka, Cent. Eur. J. Chem. 8(6), 1192 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz K. Marchewka.

About this article

Cite this article

Marchewka, M.K., Drozd, M. L-leucinium perchlorate: new molecular complex with nonlinear optical properties. Vibrational, calorimetric and theoretical studies. cent.eur.j.chem. 11, 1264–1277 (2013). https://doi.org/10.2478/s11532-013-0259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-013-0259-7

Keywords

Navigation