Skip to main content
Log in

Formation and properties of copper chalcogenides thin films on polymers formed using sodium telluropentathionate

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

The preparative conditions were optimized to get chalcogens layers on the polymer — polyamide PA surface by sorption at room temperature using sodium telluropentathionate, Na2TeS4O6. Further interaction of chalcogenized dielectric with copper’s (I/II) salt solution leads to the formation of mixed CuxSy-CuxTey layers. Optical, electrical and surface characteristics of the layers are highly controlled by the deposition parameters. The stoichiometry of these layers was established by UV-Visible and AA spectrometry. Optical absorption (transmittance) experiments show the samples are of high optical quality. The band gaps of thin films were obtained from their optical absorption spectra, which were found in the range of 1.44–2.97 eV. XRD was used in combination with AFM to characterize chalcogenides layers’ structural features. XRD analysis confirmed the formation of mixed copper chalcogenides’ layers in the surface of PA with binary phases such as Cu2Te, Cu3.18Te2, copper telluride, Cu2.72Te2, vulcanite, CuTe, anilite, Cu7S4 and copper sulfide, Cu1.8S. The crystallite sizes of thin films calculated by the Scherer formula were found to be in the range of 3.07–13.53 nm for CuxSy crystallites and 4.06–20.79 nm for CuxTey crystallites. At room temperature an electrical resistance of CuxSy-CuxTey layers varies from 3.0×103 kΩ□−1 to 1.0 kΩ□−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.A. Devillanova, Handbook of Chalcogen Chemistry, New Perspectives in Sulfur, Selenium and Tellurium (RSC Publishing, Thomas Graham House, Cambridge, 2007)

    Google Scholar 

  2. J.B. Chaudhari, N.G. Deshpande, Y.G. Gudage, A. Ghosh, V.B. Huse, Ramphal Sharma, Appl. Surf. Sc. 254(21), 6810 (2008)

    Article  CAS  Google Scholar 

  3. B. Krishnan, A. Arato, E. Cardenas, T.K. Das Roy, G.A. Castillo, Appl. Surf. Sc. 54, 3200 (2008)

    Article  Google Scholar 

  4. H.W. Schock, R. Noufi, Prog. Photovolt. Res. Appl. 8, 151 (2000)

    Article  CAS  Google Scholar 

  5. S Martinuzzi, Sol. Cells 5(3), 243 (1982)

    Article  CAS  Google Scholar 

  6. F. Pfister, W. H. Bloss, Sol. Cells 12(1–2), 155 (1984)

    Article  Google Scholar 

  7. V.M. Garcia, P.K. Nair, M.T.S. Nair, Journal of Crystal Growth 203(1–2), 113 (1999)

    Article  CAS  Google Scholar 

  8. S.J. Fonash, Solar Cells Device Physics (Academic Press, San Diego, 1981)

    Google Scholar 

  9. P. Sheldon, Prog. Photovolt. Res. Appl. 8, 77 (2000)

    Article  CAS  Google Scholar 

  10. B. Rezig, S. Duchemin, F. Guastavino, Sol. Energy Mater. 2(1), 53 (1979)

    Article  CAS  Google Scholar 

  11. H.S. Randhava, R.F. Bunshah, D.G. Brock, B.M. Basol, O.M. Staffsudd, Sol. Energy Mater. 6(4), 445 (1982)

    Article  Google Scholar 

  12. S.K. Haram, K.S.V. Santhanam, Thin Solid Films 238(1), 21 (1994)

    Article  CAS  Google Scholar 

  13. I. Grozdanov, Semicond. Sci. Technol. 9(6), 1234 (1994)

    Article  CAS  Google Scholar 

  14. S. Lindroos, A. Arnold, M. Leskela. Appl. Surf. Sci. 158(1–2), 75 (2000)

    Article  CAS  Google Scholar 

  15. S.D. Sartale, C.D. Lokhande, Materials Chemistry and Physics 65(1), 63 (2000)

    Article  CAS  Google Scholar 

  16. E. Fatas, T. Garcia, C. Montemayor, A. Medina, E. Garcia Camarero, F. Arjona, Materials Chemistry and Physics 12(2), 121 (1985)

    Article  CAS  Google Scholar 

  17. K.M. Gadave, C.D. Lokhande, Thin Solid Films 229(1), 1 (1993)

    Article  CAS  Google Scholar 

  18. D. Bonnet, P.V. Meyers, J. Mater. Res. 13, 2740 (1998)

    Article  CAS  Google Scholar 

  19. R. Ivanauskas, PhD thesis (Kaunas University of Technology, Kaunas, 1995) (in Lithuanian)

  20. R. Ivanauskas, V. Janickis, R. Maciulevičius, Chemical technology 4(13), 71 (1999) (in Lithuanian)

    Google Scholar 

  21. V.J. Šukyte, R. Ivanauskas, V. Janickis, Polish J. Chem. 79, 759 (2005)

    Google Scholar 

  22. S. Zalenkiene, J. Sukyte, R. Ivanauskas, V. Janickis, Inter. J. Photoenergy 40, 2660 (2007)

    Google Scholar 

  23. O. Foss, In: H.J. Emeleus, A.G. Sharpe (Eds.), Advances in inorganic chemistry and radiochemistry. (Academic Press, New York, 1960) 243

  24. K. Maroy, PhD thesis (University of Bergen, Bergen, Norway, 1975)

  25. O. Foss, Acta Chem. Scand. 3, 708 (1949)

    Article  CAS  Google Scholar 

  26. I. Ancutiene, V. Janickis, S. Grevys, Chemija 2, 3 (1997)

    Google Scholar 

  27. P. W. Atkins, Physical chemistry, 6th edition (Oxford University Press, London, 1998)

    Google Scholar 

  28. Analytical methods for atomic absorption spectrometry, Perkin-Elmer 503 (1973)

  29. A.I. Vogel, Text book of quantitative chemical analysis, 5th edition (Longman Scientific & Technical, London, 1989)

    Google Scholar 

  30. D. Briggs, In: M.P. Seach (Ed.), Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (John Wiley and Sons, Chichester, 1983)

  31. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Minnesota, 1978)

    Google Scholar 

  32. E.N. Kaufmann (Editor-in-chief), Characterization of Materials (Wiley-Interscience, John Wiley & Sons, New Jersey, 2003) 1097

    Google Scholar 

  33. D. Cullity, R.S. Stock, Elements of X-ray Diffraction (Prentice Hall, New York, 2001)

    Google Scholar 

  34. G. B. Williamson, R. C. Smallman, Philos. Mag. 1, 34 (1956)

    Article  CAS  Google Scholar 

  35. E.N. Kaufmann, Characterization of Materials, (Wiley-Interscience, John Wiley & Sons, New Jersey, 2003) 1097

    Google Scholar 

  36. D. Cullity, R.S. Stock, Elements of X-ray Diffraction, (Prentice Hall, New York, 2001)

    Google Scholar 

  37. G.B. Williamson, R.C. Smallman, Philos. Mag. 1, 34 (1956)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judita Šukytė.

About this article

Cite this article

Šukytė, J., Ivanauskas, R. Formation and properties of copper chalcogenides thin films on polymers formed using sodium telluropentathionate. cent.eur.j.chem. 11, 1163–1171 (2013). https://doi.org/10.2478/s11532-013-0254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-013-0254-z

Keywords

Navigation