Skip to main content

Sono-extraction as a pretreatment approach for the screening evaluation of element mobility of sediment samples


Application of economically important and time saving pretreatment for the screening element mobility evaluation of contaminated sediments is presented. Ultrasonically-assisted single-step extraction (USAE) was carried out by EDTA solution. The extraction time of USAE was optimized and obtained results were compared with results estimated by conventional (EDTA extraction) and by sequential extraction (modified BCR protocol). The original three step BCR protocol was modified by addition of the first step (water leaching) and the fifth step, total digestion of sediment residue (acid mixture with HF). Zn, Cu and Pb have been determined in extracts by ICP-OES. Good conformity of the ultrasonically-extracted element contents and sum of contents, extracted during first three steps (water-soluble, acid-extractable, reducible — i.e., the most mobile fractions) of sequential extraction, was found. The sono-extraction reduced operating time of the first three steps of sequential extraction from 48 h to 15 min. Thus, USAE can serve as a rapid screening assessment of the mobile and potentially mobile element portions in sediments and other similar solid state environmental media. Analytical quality control was realized by comparison of the sums of element contents obtained at individual (five) extraction steps. Total element contents were also determined by an independent method (XRF).


  1. [1]

    J. Peng, Y. Song, P. Yuan, X. Cui, G. Qiu, J. Haz. Mat. 161, 633 (2009)

    Article  CAS  Google Scholar 

  2. [2]

    W. Salomons, In: W.M. Stigliani (Ed.), Biogeodynamics of Pollutants in Soils and Sediments: Risk Assessment of Delayed and Non-linear Responses (Environmental Science, Springer-Verlag, New York, USA, 1995), 331

  3. [3]

    J.R. Bacon, C.M. Davidson, Analyst 133, 25 (2008)

    Article  CAS  Google Scholar 

  4. [4]

    M.B. Álvarez, M. Garrido, A.G. Lista, B.S. Fernández Band, Anal. Chim. Acta 620, 34 (2008)

    Article  Google Scholar 

  5. [5]

    D.M. Templeton, et al., Pure Appl. Chem. 72, 1453 (2000)

    Article  CAS  Google Scholar 

  6. [6]

    C. Gleyzes, S. Tellier, M. Astruc, Trends in Analytical Chemistry 21, 451 (2002)

    Article  CAS  Google Scholar 

  7. [7]

    V. Safarifard, A. Morsali, Ultrasonics Sonochemistry 19, 823 (2012)

    Article  CAS  Google Scholar 

  8. [8]

    S. Zhang, Ultrasonics Sonochemistry 19, 767 (2012)

    Article  CAS  Google Scholar 

  9. [9]

    T.J. Mason, Ultrasonics Sonochemistry 10, 175 (2003)

    Article  CAS  Google Scholar 

  10. [10]

    J.V. Sinisterra, Ultrasonics 30, 180 (1992)

    Article  CAS  Google Scholar 

  11. [11]

    A. Gedanken, Ultrasonics Sonochemistry 11, 47 (2004)

    Article  CAS  Google Scholar 

  12. [12]

    T.J. Mason, J.P. Lorimer, Applied Sonochemistry (Willey -VCH, Weinheim, 2002)

    Book  Google Scholar 

  13. [13]

    C.W. Huie, Anal. Bioanal. Chem. 373, 23 (2002)

    Article  CAS  Google Scholar 

  14. [14]

    S. Canepari, E. Cardarelli, S. Ghighi, L. Scimonelli, Talanta 66, 1122 (2005)

    Article  CAS  Google Scholar 

  15. [15]

    H. Hayashi, S. Furuzawa, T. Tanaka, M. Hiraide, J. Anal. At. Spectrom. 19, 773 (2004)

    Article  CAS  Google Scholar 

  16. [16]

    P. Cava-Montesinos, M.L. Cervena, A. Pastor, M. de la Guardia, Anal. Chim. Acta 531, 111 (2005)

    Article  CAS  Google Scholar 

  17. [17]

    A.M. Ure, C.M. Davidson, R.P. Thomas, In: P. Quevauviller, E.A. Maier, B. Griepink (Ed.), Quality Assurance for Environmental Analysis (Elsevier, Amsterdam, Netherlands, 1995), 505

  18. [18]

    M.D.L. de Castro, F.P. Capote, Analytical application of ultrasound (Elsevier, Amsterdam, Netherlands, 2007)

    Google Scholar 

  19. [19]

    G. Rauret, et al., J. Environ. Monit. 1, 57 (1999)

    Article  CAS  Google Scholar 

  20. [20]

    V. Vojteková, J. Nováková, D. Mackových, Environ. Chem. Letters 8, 45 (2010)

    Article  Google Scholar 

  21. [21]

    Geofond — State geological Institute of Dionýz Štúr in Slovakia, Index of the Old Mining Works of Slovakia (Mlynská dolina, Bratislava, Slovakia, 2012)

    Google Scholar 

  22. [22]

    T. Špaldoň, J. Brehuv, M. Bobro, J. Hančuľák, O. Šestinová, Acta Montanistica Slovaca, 11, 375 (2006)

    Google Scholar 

  23. [23]

    K. Marsina, Geochemical Atlas of the Slovak Republic, Part III: Rocks (Ministry of the Environment, Typocon, Bratislava, Slovakia, 1999)

    Google Scholar 

  24. [24]

    V. Vojteková, Ph.D. Thesis (Technical University, Košice, Slovakia, 2004)

  25. [25]

    Methodical Instruction No 549/1998-2 (Ministry of Environment of the Slovak Republic, Bratislava, 1998)

  26. [26]

    D. Mackových, Subproject 2, GAL/VL/ČS/3-2000 (Geological Survey of Slovak Republic, Spišská Nová Ves, 2000)

    Google Scholar 

  27. [27]

    V. Vojteková, J. Vojtek, J. Bakoš, Environ. Chem. Letters 9, 285 (2011)

    Article  Google Scholar 

  28. [28]

    G. Rauret, J.F. López-Sànchez, A. Sahuquillo, H Muntau, Ph. Quevauviller, Report EUR 19502 EN (European Commission, Brussels, 2000)

    Google Scholar 

  29. [29]

    R.A. Sutherland, F.M.G. Tack, Anal. Chim. Acta 454, 249 (2002)

    Article  CAS  Google Scholar 

  30. [30]

    V. Vojteková, A. Majchrák, D. Mackových, J. Blašková, Chem. Listy 104, 1047 (2010)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Viera Vojteková.

About this article

Cite this article

Blašková, J., Vojteková, V., Nováková, J. et al. Sono-extraction as a pretreatment approach for the screening evaluation of element mobility of sediment samples. cent.eur.j.chem. 11, 1201–1212 (2013).

Download citation


  • Environmental analysis
  • Extraction
  • Ultrasound
  • Screening of element mobility