Central European Journal of Chemistry

, Volume 11, Issue 5, pp 655–663 | Cite as

Aromatic properties of 8-hydroxyquinoline and its metal complexes

  • Krzysztof K. Zborowski
  • Miquel Solá
  • Jordi Poater
  • Leonard M. Proniewicz
Invited Paper

Abstract

Chelatoaromaticity (aromaticity of chelate complexes) has been recently recognized as an important property influencing the stability of chelate compounds. In this paper, aromaticity of various forms of 8-hydroxyquinoline (anion, neutral molecule, zwitterion and cation) as well as its chelate complexes with magnesium and aluminium ions are investigated. Aromatic properties of these compounds are analyzed using several aromaticity indices based on energetic, geometric, magnetic and electronic physical manifestations of this phenomenon. Results of performed calculations have shown different aromatic properties for the two rings (pyridine and benzene) occurring in the studied ligand. Aromaticity of these rings in metal complexes of 8-hydroxyquinoline is significantly higher than that in corresponding ligand anion. This means that during complexation the aromaticity of the ligand increases and the chelatoaromatic effect stabilizes the studied metal complexes. In contrast, metallocyclic rings of studied metal complexes have non-aromatic properties, and, consequently, the metallocyclic ring is not stabilized by chelatoaromaticity. We conclude that, in the complex, every 8-hydroxyquinoline unit and the metal ion are separated p-electronic systems.

Keywords

8-hydroxyquinoline Aromaticity Chelatocomplexes Chelatoaromaticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Chabereck, A.E. Martell, Organic Sequestering Agents (Wiley, New York, 1959)Google Scholar
  2. [2]
    A.E. Martell, M. Calvin, Chemistry of the Metal Chelate Compounds (Prentice Hall, Englewood Cliffs, 1959)Google Scholar
  3. [3]
    C.W. Tang, S.A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987)CrossRefGoogle Scholar
  4. [4]
    R.E. Bambury, Burger’s Medicinal Chemistry, Part II (John Wiley, New York, 1979)Google Scholar
  5. [5]
    U.S. Department of Health and Human Resources, Toxicology and Carcinogenesis Studies of 8-hydroxyquinoline in F344/N Rats and B6C3F1 Mice, CAS NO. 149-24-3 (1985)Google Scholar
  6. [6]
    M.L. Thakur, J.P. Lavender, R.N. Arnot, D.J. Silvester, A.W. Segal, J. Nucl. Med. 18, 1012 (1977)Google Scholar
  7. [7]
    M.L. Thakur, A.W. Segar, L. Louis, M.J. Welch, J. Hopkins, T.J. Peters, J. Nucl. Med. 18, 1020 (1977)Google Scholar
  8. [8]
    P.M. Chrisholm, H.J. Danpure, G. Healey, S. Osman, J. Nucl. Med. 20, 1308 (1979)Google Scholar
  9. [9]
    A.I. Kassis, S.J. Adelstein, J. Nucl. Med. 26, 187 (1985)Google Scholar
  10. [10]
    I. Kartsonakis, I. Daniilidis, G. Kordas, J. Sol-Gel. Sci. Technol. 48, 24 (2008)CrossRefGoogle Scholar
  11. [11]
    M. Calvin, K.W. Wilson, J. Am. Chem. Soc. 67, 2003 (1945)CrossRefGoogle Scholar
  12. [12]
    M. Kuhr, H. Musso, Angew. Chem. 81, 150 (1969)CrossRefGoogle Scholar
  13. [13]
    M.K. Milčić, B.D. Ostojić, S.D. Zarić, Inorg. Chem. 46, 7109 (2007)CrossRefGoogle Scholar
  14. [14]
    H. Masui, Coord. Chem. Rev. 219–221, 957 (2001)CrossRefGoogle Scholar
  15. [15]
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  16. [16]
    C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  17. [17]
    P.J. Stevens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)CrossRefGoogle Scholar
  18. [18]
    A.D. McLean, G. S. Chandler, J. Chem. Phys. 72, 5639 (1980)CrossRefGoogle Scholar
  19. [19]
    K.K. Zborowski, M. Solà, J. Poater, L.M. Proniewicz, J. Phys. Org. Chem. 24, 499 (2011)CrossRefGoogle Scholar
  20. [20]
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian’ 03 (Gaussian, Inc., Pittsburgh PA, 2003)Google Scholar
  21. [21]
    M.K. Cyrański, T.M. Krygowski, A.R. Katritzky, P.v.R. Schleyer, J. Org. Chem. 67, 1333 (2002)CrossRefGoogle Scholar
  22. [22]
    F. Feixas, E. Matito, J. Poater, M. Solà, J. Comput. Chem. 29, 1543 (2008)CrossRefGoogle Scholar
  23. [23]
    T.M. Krygowski, J. Chem. Inf. Comput. Sci. 33, 70 (1993)CrossRefGoogle Scholar
  24. [24]
    P.v.R. Schleyer, C. Marker, A. Dransfeld, H.J. Jiao, N.J.R. van Eikema Hommes, J. Am. Chem. Soc. 118, 6317 (1996)CrossRefGoogle Scholar
  25. [25]
    P.v.R. Schleyer, H. Jiao, N.J.R. van Eikema Hommes, V.G. Malkin, O.L. Malkina, J. Am. Chem. Soc. 119, 12669 (1997)CrossRefGoogle Scholar
  26. [26]
    P.v.R. Schleyer, M. Monohar, Z. Wang, B. Kiran, H. Jiao, R. Puchta, N.J.R. van Eikema Hommes, Org. Lett. 3, 2465 (2001)CrossRefGoogle Scholar
  27. [27]
    Z. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, P.v.R. Scheyer, Chem. Rev. 105, 3842 (2005)CrossRefGoogle Scholar
  28. [28]
    H. Fallah-Bagher-Shaidaei, C.S Wannere, C. Corminboeuf. R. Puchta, P.v.R. Schleyer, Org. Lett. 8, 863 (2006)CrossRefGoogle Scholar
  29. [29]
    M. Palusiak, T.M. Krygowski, Chem. Eur. J. 13, 7996 (2007)CrossRefGoogle Scholar
  30. [30]
    J. Poater, X. Fradera, M. Duran, M. Solà, Chem. Eur. J. 9, 400 (2003)CrossRefGoogle Scholar
  31. [31]
    E. Matito, M. Duran, M. Solà, J. Chem. Phys 122, 014109 (2005)CrossRefGoogle Scholar
  32. [32]
    M. Gambiagi, M. Segre de Gambiagi, C.D. dos Santos Silva, A. Paiva de Figueiredo, Phys. Chem. Chem. Phys. 2, 3381 (2000)CrossRefGoogle Scholar
  33. [33]
    P. Bultinck, R. Ponec, S. van Damme, J. Phys. Org. Chem. 18, 706 (2005)CrossRefGoogle Scholar
  34. [34]
    P. Bultinck, M. Rafat, R. Ponec, B. van Gheluve, R. Carbó-Dorca, P. Popelier, J. Phys. Chem. A 110, 7642 (2006)CrossRefGoogle Scholar
  35. [35]
    P.v.R. Schleyer (Ed.), Chem. Rev. 101, 1115 (2001)Google Scholar
  36. [36]
    P.v.R. Schleyer (Ed.), Chem. Rev. 105, 3433 (2005)Google Scholar
  37. [37]
    K. Woliński, J.F. Hilton, P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990)CrossRefGoogle Scholar
  38. [38]
    R.F.W. Bader, Atoms in molecules. A quantum theory (Oxford University, New York, 1990)Google Scholar
  39. [39]
    F.W. Biegler-König, R.F.W Bader, T.H. Tang, J. Comput. Chem. 3, 317 (1982)CrossRefGoogle Scholar
  40. [40]
    M.K. Cyrański, P.v.R. Schleyer, T.M. Krygowski, H. Jiao, G. Hohlneicher, Tetrahedron 59, 1657 (2003)CrossRefGoogle Scholar
  41. [41]
    P.v.R. Schleyer, F. Pűhlhofer, Org. Lett. 2, 2873 (2002)CrossRefGoogle Scholar
  42. [42]
    T.M. Krygowski, M.K. Cyranski, Tetrahedron 52, 10255 (1996)CrossRefGoogle Scholar
  43. [43]
    F. Feixas, E. Matito, J. Poater, M. Solà J. Phys. Chem. A 111, 4513 (2007)CrossRefGoogle Scholar
  44. [44]
    H. SzatyŁowicz, T. M. Krygowski, M. Palusiak, J. Poater, M. Solà, J. Org. Chem. 76, 550 (2011)CrossRefGoogle Scholar
  45. [45]
    M.K. Cyrański, M. Gilski, M. Jaskolski, T.M. Krygowski, J. Org. Chem. 68, 8607 (2003)CrossRefGoogle Scholar
  46. [46]
    M. Palusiak, S. Simon, M. Solà, J. Org. Chem. 71, 5241 (2006)CrossRefGoogle Scholar
  47. [47]
    A.R. Katritzky, K. Jug, D.C. Oniciu, Chem. Rev. 101, 1421 (2001)CrossRefGoogle Scholar
  48. [48]
    T.M. Krygowski, M.K. Cyranski, Chem. Rev. 101, 1385 (2001)CrossRefGoogle Scholar
  49. [49]
    J. Poater, I. García-Cruz, F. Illas, M. Solà, Phys. Chem. Chem. Phys. 6, 314 (2004)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Krzysztof K. Zborowski
    • 1
  • Miquel Solá
    • 2
  • Jordi Poater
    • 2
  • Leonard M. Proniewicz
    • 1
    • 3
  1. 1.Faculty of ChemistryJagiellonian UniversityKrakówPoland
  2. 2.Institute of Computational Chemistry and Department of ChemistryGirona UniversityGirona, CataloniaSpain
  3. 3.The State Higher Vocational SchoolTarnówPoland

Personalised recommendations