Central European Journal of Chemistry

, Volume 11, Issue 2, pp 280–289 | Cite as

Phenylmethoxybis(tetrazolium) ion-association complexes with an anionic indium(III) — 4-(2-pyridylazo)resorcinol chelate

  • Teodora S. Stefanova
  • Kiril B. GavazovEmail author
Research Article


Complex formation and liquid-liquid extraction were studied in systems containing indium(III), 4-(2-pyridylazo)resorcinol (PAR), phenylmethoxybis(tetrazolium) salt (MBT), water and chloroform. The following MBTs, which differ only by the number of -NO2 groups in their cationic parts, were used: 3,3′-(3,3′-dimetoxy-4,4′-biphenylene)bis(2,5-diphenyl-2H-tetrazolium chloride) (Blue Tetrazolium chloride, BT), 3,3′-(3,3′-dimetoxy-4,4′-biphenylene)bis[2-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride] (Nitro Blue Tetrazolium chloride, NBT) and 3,3′-(3,3′-dimetoxy-4,4′-biphenylene)bis[2,5-di(4-nitrophenyl)-2H-tetrazolium chloride] (Tetranitro Blue Tetrazolium chloride, TNBT). The composition of the formed ternary complexes was determined, In:PAR:MBT=1:2:2, and the optimum conditions for their extraction found: pH, shaking time, concentration of the reagents and the sequence of their addition. Some key constants were estimated: constants of extraction (Kex), constants of association (β) and constants of distribution (KD). BT appears to be the best MBT for extraction of the In(III)-PAR species, [In3+(OH)3(PAR)2]4−, (Log Kex=10.9, Log β=9.8, Log KD=1.12, R%=92.7%). Several additional characteristics concerning its application as extraction-spectrophotometric reagent were calculated: limit of detection (LOD = 0.12 µg cm−3), limit of quantification (LOD = 0.40 µg cm−3) and Sandell’s sensitivity (SS =1.58 ng cm−2); Beer’s law is obeyed for In(III) concentrations up to 3.2 µg mL−1 with a molar absorptivity coefficient of 7.3×104 L mol−1 cm−1 at λmax=515 nm.


Indium Liquid-liquid extraction Spectrophotometry Ion-associate Ditetrazolium salts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. I. Fedorov, R.H. Akchurin, Indium (Nauka, MAIK Nauka/Interperiodika, Moskow, 2000) (In Russian)Google Scholar
  2. [2]
    A. M. Alfantazi, R.R. Moskalyk, Miner. Eng. 16, 687 (2003)CrossRefGoogle Scholar
  3. [3]
    J. Poledniok, Water, Air, Soil Pollut. 186, 343 (2007)CrossRefGoogle Scholar
  4. [4]
    M. Tuzen, M. Soylak, J. Hazard. Mater. 129, 179 (2006)CrossRefGoogle Scholar
  5. [5]
    C. Mikolajczak, B. Jackson, Technical papers, White papers (Indium Corporation, USA, 2011) Google Scholar
  6. [6]
    K. Vang, F. Liu, H. Ye, X. Zhang, Iran. J. Chem. Chem. Eng. 29, 19 (2010)Google Scholar
  7. [7]
    A. P. Paiva, Sep. Sci. Technol. 36, 1395 (2001)CrossRefGoogle Scholar
  8. [8]
    J. S. Liu, et al., Hydrometallurgy 82, 137 (2006)CrossRefGoogle Scholar
  9. [9]
    H. -M. Liu, C.-C. Wu, Y.-H. Lin, C.-K. Chiang, J. Hazard. Mater. 172, 744 (2009)CrossRefGoogle Scholar
  10. [10]
    B. Gupta, N. Mudhar, I. Singh, Sep. Purif. Technol. 57, 294 (2007)CrossRefGoogle Scholar
  11. [11]
    A. Reller, et al., GAIA 18, 127 (2009)Google Scholar
  12. [12]
    V. I. Safarov, T.A. Minashvili, G.N. Iluridze, In: P.J. Kervalishvili, S.A. Michailidis (Eds.), Philosophy and Synergy of Information: Sustainability and Security (Ios Press BV, Amsterdam, 2012) 139Google Scholar
  13. [13]
    K. Takahashi, et al., Metall. Mater. Trans. A, 40, 891 (2009)CrossRefGoogle Scholar
  14. [14]
    S. Salhofer, M. Spitzbart, K. Maurer, In: J. Hesselbach, C. Herrmann (Eds.), Glocalized Solutions for Sustainability in Manufacturing (Springer-Verlag, Berlin, Heidelberg, 2011) 454CrossRefGoogle Scholar
  15. [15]
    K. Nakajima, K. Yokoyama, K. Nakano, T. Nagasaka, Mater. Trans. 48, 2365 (2007)CrossRefGoogle Scholar
  16. [16]
    S. Fan, Q. Jia, N. Song, R. Su, W. Liao, Sep. Purif. Technol. 75, 76 (2010)CrossRefGoogle Scholar
  17. [17]
    G. Toncheva, K. Gavazov, V. Lekova, K. Stojnova, A. Dimitrov, Cent. Eur. J. Chem. 9, 1143 (2011)CrossRefGoogle Scholar
  18. [18]
    K. B. Gavazov, et al., Chemija (in press)Google Scholar
  19. [19]
    T. S. Stefanova, G.K. Toncheva, K.B. Gavazov, Chem. J. 2, 146 (2012)Google Scholar
  20. [20]
    P. K. Naoghare, H.T. Kwon, J.M. Song, Biosens. Bioelectron. 24, 3587 (2009)CrossRefGoogle Scholar
  21. [21]
    A. A. Basfar, K.A. Rabeh, A.A. Moussa, R.I. Msalam, Radiat. Phys. Chem. 80, 763 (2011)CrossRefGoogle Scholar
  22. [22]
    M. Kozicki, E. Sasiadek, Rad. Meas. 46, 1123 (2011)CrossRefGoogle Scholar
  23. [23]
    X. H. Li, S.D. Deng, H. Fu, Corr. Sci. 52, 2786 (2010)CrossRefGoogle Scholar
  24. [24]
    X. H. Li, S.D. Deng, H. Fu, Mater. Chem. Phys. 129, 696 (2011)CrossRefGoogle Scholar
  25. [25]
    M. V. Berridge, P.M. Herst, A.S. Tan, Biotechnol. Annu. Rev. 11(Suppl.), 127 (2005)CrossRefGoogle Scholar
  26. [26]
    D. S. Daniel, In: R. Muthyala (Ed.), Chemistry and Applications of Leuco Dyes (Springer, US, 2002) 207CrossRefGoogle Scholar
  27. [27]
    J. Ghaffari, et al., Saudi Med. J. 29, 1601 (2008)Google Scholar
  28. [28]
    Kimberly-Clark Worldwide Inc., US patent application 20120130195, 2012.05.24Google Scholar
  29. [29]
    L. Glen, R. Bayston, B. Scammell, W. Ashraf, Br. J. Surg. 98, 42 (2011)Google Scholar
  30. [30]
    M. Kamburova, Microchim. Acta 128, 177 (1998)CrossRefGoogle Scholar
  31. [31]
    M. Kamburova, A. Alexandrov, Chem. Anal. (Warsaw) 44, 745 (1999)Google Scholar
  32. [32]
    K. B. Gavazov, A.N. Dimitrov, V.D. Lekova, Uspekhi Khim. 76, 187 (2007) (in Russian)Google Scholar
  33. [33]
    A. Dimitrov, V. Lekova, K. Gavazov, B. Boyanov, J. Anal. Chem. 62, 122 (2007)CrossRefGoogle Scholar
  34. [34]
    K. B. Gavazov, M. Türkyilmaz, Ö. Altun, Bulg. Chem. Commun. 40, 65 (2008)Google Scholar
  35. [35]
    K. B. Gavazov, et al., Croat. Chem. Acta 85, 53 (2012)CrossRefGoogle Scholar
  36. [36]
    Z. Zhiming, M. Dongsten, Y. Cunxiao, J. Rare Earths 15, 216 (1997)Google Scholar
  37. [37]
    E. Asmus, Fresenius’ J. Anal. Chem. 178, 104 (1960)CrossRefGoogle Scholar
  38. [38]
    F. Genç, K.B. Gavazov, M. Türkyilmaz, Cent. Eur. J. Chem. 8, 461 (2010)CrossRefGoogle Scholar
  39. [39]
    T. M. Seward, C.M.B. Henderson, J.M. Charnock, Chem. Geol. 167, 117 (2000)CrossRefGoogle Scholar
  40. [40]
    F. I. Lobanov, G.K. Nurtaeva, E.E. Ergozhin, Ekstraktsiya kompleksov ionov metallov s piridinovymi oksiazosoedineniyami (Nauka, Alma-Ata, 1983) (in Russian)Google Scholar
  41. [41]
    L. L. Kolomiets, I.V. Pyatnitskii, Ukr. Khim. Zh. 45, 62 (1979) (in Russian)Google Scholar
  42. [42]
    M. Hniličková, Collection Czech. Chem. Commun. 29, 1424 (1964)Google Scholar
  43. [43]
    M. I. Bulatov, I.P. Kalinkin, Prakticheskoe rukovodstvo po fotokolorimetricheskim i spektrofotometricheskim metodam analiza (Khimiya, Leningrad, 1986) (in Russian)Google Scholar
  44. [44]
    A. Holme, F.J. Langmyhr, Anal. Chim. Acta 36, 383 (1966)CrossRefGoogle Scholar
  45. [45]
    A.E. Harvey, D.L. Manning, J. Amer. Chem. Soc. 72, 4488 (1950)CrossRefGoogle Scholar
  46. [46]
    K. Gavazov, A. Dimitrov, V. Lekova, E. Karaasenova, Nauch. Tr. Plovdiv Univ. Khim. 34, 19 (2006) (in Bulgarian)Google Scholar
  47. [47]
    K.B. Gavazov, V.D. Lekova, A.N. Dimitrov, G.I. Patronov, Cent. Eur. J. Chem. 5, 257 (2007)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of General and Inorganic ChemistryUniversity of PlovdivPlovdivBulgaria

Personalised recommendations