Skip to main content
Log in

Characterisation of the surface structure and bioactivity of glass and glass ceramics using surface topography

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

The present paper reports the results of the relationship between the surface topography, microstructure and the in vitro bioactivity of samples with and without fluorapatite content in simulated body fluid. Glasses and glass ceramics belonging to the Li2O-SiO2-CaO-P2O5-CaF2 system were prepared by using conventional melting technique following by heat treatment to obtain glass ceramics. This current study demonstrates the benefits of combining two microscopic methods for better investigation of the surface structure. The formation of apatite layer on the surface and the increase in surface roughness proved that the glasses and glass ceramics with bioactive fluorapatite content could satisfy to the requirements for biomaterial applications. The results also showed that the roughness of apatite layer formed after immersion in body fluid on the surface of glasses with fluorapatite was more pronounced than that of equivalent glass ceramic samples cured under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, J. Biomed. Mater. Res. 36, 41 (1971)

    Google Scholar 

  2. L.L. Hench, J. Am. Ceram. Soc. 74 (1991)

  3. L.L. Hench, Thermochim. Acta, 280 (1996)

  4. J. Strnad, Z. Strnad, J. Šesták, J. Therm. Anal. Cal. 88, 1 (2007)

    Article  Google Scholar 

  5. S. Padilla, J. Román, A. Carenas, M. Vallet-Regí, Biomaterials 26, 475 (2005)

    Article  CAS  Google Scholar 

  6. I.B. Leonor, A. Ito, K. Onuma, N. Kanzaki, R.L. Reis, Biomaterials 24, 579 (2003)

    Article  CAS  Google Scholar 

  7. E. Kuzielová, J. Hrubá, M. Palou, E. Smrčková, Ceram.-Silik. 50, 159 (2006)

    Google Scholar 

  8. B.R. Durschang, G. Carl, K. Marchetti, E. Roeder, C. Rüssel, Glastech. Ber. Glass Sci. Technol. 68C2, 172 (1995)

    Google Scholar 

  9. B.R. Durschang, G. Carl, C. Rüssel, E. Roeder, Glastech. Ber. Glass Sci. Technol 67, 171 (1994)

    CAS  Google Scholar 

  10. D. Zhang, Y. Hu, Y. Wu, W. Si, Adv. Mat. Res. 177, 447 (2011)

    Article  CAS  Google Scholar 

  11. X. Guo, H. Yang, M. Cao, J. Non-Cryst Solids. 351(24–26), 2133 (2005)

    Article  CAS  Google Scholar 

  12. M. Palou, E. Kuzielová, M. Vitkovič, G. Lutišanová, M.S.M. Noaman, Ceram.-Silik. 53(3), 161 (2009)

    CAS  Google Scholar 

  13. J. Lao, J.M. Nedelec, P. Moretto, E. Jallot, Nucl. Instrum. Methods Phys. Res. 261B, 488 (2007)

    Google Scholar 

  14. J. Lao, J.M. Nedelec, P. Moretto, E. Jallot, Nucl. Instrum. Methods Phys. Res. 266B, 2412 (2008)

    Google Scholar 

  15. P. Saravanapavan, J.R. Jones, R.S. Pryce, L.L. Hench, J. Biomed. Mater. Res. 66A, 110 (2003)

    Article  CAS  Google Scholar 

  16. F.C.H. De Menezes, G.A. Borges, T.A. Valentino, M.A.H. De Menezes Oliveira, Braz. J. Oral. Sci. 8(3), 9 (2009)

    Google Scholar 

  17. W. Höland, V, Rheinberger, E. Apel, Ch. Van’t Hoen, J. Eur. Ceram. Soc. 27(2–3), 1521 (2007)

    Article  Google Scholar 

  18. W. Höland, V, Rheinberger, M. Schweiger, Philos. T. Roy. Soc. 361, 575 (2003)

    Article  Google Scholar 

  19. M. Palou, E. Kuzielova, M. Vitkovic, M.S.M. Noaman, Cent. Eur. J. Chem. 7(2), 228 (2009)

    Article  CAS  Google Scholar 

  20. P.F. James, Y. Iqbal, U.S. Jais, S. Jordery, W.E. Lee, J. Non-Cryst. Solids. 219, 17 (1997)

    Article  CAS  Google Scholar 

  21. Z. Xiao, J. Zhou, Y. Wang, M. Luo, Open Mater. Sci. J. 5, 45 (2011)

    Article  CAS  Google Scholar 

  22. A.M. Ektessabi, H. Kimura, Thin Solid Films 270, 335 (1995)

    Article  CAS  Google Scholar 

  23. E. Rädlein, G.H. Frischat, J. Non-Cryst. Solids 222, 69 (1997)

    Google Scholar 

  24. T. Kokubo, S. Ito, T. Yamamuro, J. Biomed. Mater. Res. 24, 331 (1990)

    Article  CAS  Google Scholar 

  25. T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006)

    Article  CAS  Google Scholar 

  26. A. Itälä, E.G. Nordström, H. Ylänen, H.T. Aro, M. Hupa, J. Biomed. Mater. Res. (56)2, 282 (2001)

    Article  Google Scholar 

  27. T. Kokubo, H.M. Kim, M. Kawashita, Biomaterials 24, 2161 (2003)

    Article  CAS  Google Scholar 

  28. H. Takadama, H.M. Kim, T. Kokubo, J. Am. Ceram. Soc. 8, 1933 (2002)

    Article  Google Scholar 

  29. N.Y. Mostafa, H.M. Hassan, F.H. Mohamed, J. Alloys Comp. 479, 692 (2009)

    Article  CAS  Google Scholar 

  30. O. Peitl, E.D. Zanotto, L.L. Hench, J. Non-Cryst. Solids 292, 115 (2001)

    Article  CAS  Google Scholar 

  31. A. Schmidt, PhD thesis (Technical University Clausthal, Clausthal, DE, 1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Lutišanová.

About this article

Cite this article

Lutišanová, G., Palou, M.T., Mikula, M. et al. Characterisation of the surface structure and bioactivity of glass and glass ceramics using surface topography. cent.eur.j.chem. 10, 1890–1898 (2012). https://doi.org/10.2478/s11532-012-0111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-012-0111-5

Keywords

Navigation