Advertisement

Central European Journal of Chemistry

, Volume 10, Issue 6, pp 1760–1765 | Cite as

Enantioselective inhibition of immobilized acetylcholinesterase in biosensor determination of pesticides

  • Marzena Kaniewska
  • Justyna Jońca
  • Iwona Połeć
  • Tomasz Sikora
  • Jean-Louis Marty
  • Marek Trojanowicz
Short Communication
  • 122 Downloads

Abstract

Chiral effects for the inhibition of acetylcholinesterase by organophosphorus pesticides were investigated for insecticide malathion and malaoxon, which is a metabolic product of malathion in living organisms. Studies were carried out using a bienzymatic biosensor with immobilized acetylcholinesterase, choline oxidase, and with Prussian Blue used as a mediator. In both cases the R enantiomers accelerate acetylocholinesterase inhibition. The chiral effect in inhibition was much more pronounced in fast flow measurements than in batch measurements.

Keywords

Biosensor Enantioselectivity Enantioselective inhibition Acetylcholinesterase Malaoxon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Amine, H. Mohammadi, I. Bourais, G. Palleschi, Biosensors Bioelectron. 21, 1405 (2006)CrossRefGoogle Scholar
  2. [2]
    S. Andresscu, J.-L. Marty, Biomol. Eng. 23, 1 (2006)CrossRefGoogle Scholar
  3. [3]
    Y. Boublik, P. Saint-Aguet, A. Loguarre, M. Arnaud, F. Villatte, S. Estrada-Mondaca, D. Fournier, Protein. Eng. 15, 43 (2002)CrossRefGoogle Scholar
  4. [4]
    H. Schulze, S.B. Muench, F. Villatte, R.D. Schmid, T.T. Bachmann, Anal. Chem. 77, 5823 (2005)CrossRefGoogle Scholar
  5. [5]
    A. GaŁęzowska, T. Sikora, G. Istamboulie, M. Trojanowicz, I. PoŁeć, G.S. Nunes, T. Noguer, J.-L. Marty, Sens. Mater. 20, 299 (2008)Google Scholar
  6. [6]
    G. Valdes-Ramirez, M. Cortina, M.T. Ramirez-Silva, J.-L. Marty, Anal. Bioanal. Chem. 392, 699 (2008)CrossRefGoogle Scholar
  7. [7]
    G. Jeanty, A. Wojciechowska, J.-L. Marty, M. Trojanowicz, Anal. Bioanal. Chem. 373, 691 (2002)CrossRefGoogle Scholar
  8. [8]
    D. Du, J. Wang, J.N. Smith, C. Timchalk, Y. Lin, Anal. Chem. 81, 9314 (2009)CrossRefGoogle Scholar
  9. [9]
    A.G. Hadd, S.C. Jacobson, J.M. Ramsey, Anal. Chem. 71, 5206 (1999)CrossRefGoogle Scholar
  10. [10]
    X. Shen, F. Liang, G. Zhang, D. Zhang, Analyst 137, 2119 (2012)CrossRefGoogle Scholar
  11. [11]
    S. Viswanathan, H. Radecka, J. Radecki, Biosensors Bioelectron. 24, 2772 (2009)CrossRefGoogle Scholar
  12. [12]
    I. Ion, A.C. Ion, Mater. Sci. Eng. C, 32, 1001 (2012)CrossRefGoogle Scholar
  13. [13]
    K. Wang, H.-N. Li, J. Wu, C. Ju, J.-J. Yan, Q. Liu, B. Qiu, Analyst 136, 3349 (2011)CrossRefGoogle Scholar
  14. [14]
    Z. Zheng, Y. Zhou, X. Li, S. Liu, Z. Tang, Biosensors Bioelectron. 26, 3081 (2011)CrossRefGoogle Scholar
  15. [15]
    A.W. Garrison, Environ Sci Technol. 40, 16 (2006)CrossRefGoogle Scholar
  16. [16]
    I. J. Buerge, T. Poiger, M. D. Müller, H-R. Buser. Environ. Sci. Technol. 37, 2668 (2003)CrossRefGoogle Scholar
  17. [17]
    A. W. Garrison, P. Schmitt, D. Martens, A. Kettrup, Environ. Sci. Technol. 30, 2449 (1996)CrossRefGoogle Scholar
  18. [18]
    A. Miyazaki, T. Nakamura, M. Kawaradani, S. Marumo, J. Agric. Food. Chem. 36, 835 (1988)CrossRefGoogle Scholar
  19. [19]
    Q. Zhou, C. Xu, Y. Zhang, W. Liu, J. Agric. Food Chem. 57, 1624 (2009)CrossRefGoogle Scholar
  20. [20]
    N. Kurihara, J. Miyamoto, G.D. Paulson, B. Zeeh, M.W. Skidmore, R.M. Hollingworth, H.A. Kuiper, Pure Appl Chem. 69, 2007 (1997)CrossRefGoogle Scholar
  21. [21]
    J. Miyamoto, H. Kaneko, Y. Takamatsu, J. Biochem Toxicol. 1, 79 (1986)CrossRefGoogle Scholar
  22. [22]
    M.G. Nillos, G. Rodriguez-Fuentes, J. Gan, D. Schlenk, Environm. Toxicol. Chem. 26, 1949 (2007)CrossRefGoogle Scholar
  23. [23]
    K.D. Lin, F. Zang, S.S. Zhou, W. Lui, J. Gan, Z. Pan, Environm. Toxicol. Chem. 26, 2339 (2007)CrossRefGoogle Scholar
  24. [24]
    S. Zhou, K. Lin, H. Yang, L. Li, W. Liu, J. Li, Chem. Res. Toxicol. 20, 400 (2007)CrossRefGoogle Scholar
  25. [25]
    C.E. Berkman, D.A. Quinn, C.M. Thompson, Chem. Res. Toxicol. 6, 724 (1993)CrossRefGoogle Scholar
  26. [26]
    O.P. Rodriguez, G.W. Muth, C.E. Berkman, K. Kim, C.M. Thompson, Bull. Environ. Contam. Toxicol. 58, 171 (1997)CrossRefGoogle Scholar
  27. [27]
    F. Arduini, F. Ricci, C.S. Tuta, D. Moscone, A. Amine, G. Palleschi, Anal. Chim. Acta 580, 155 (2006)CrossRefGoogle Scholar
  28. [28]
    A. Ivanov, G. Evtugyn, H. Budnikov, F. Ricci, D. Moscone, G. Palleschi, Anal. Bioanal. Chem. 377, 624 (2003)CrossRefGoogle Scholar
  29. [29]
    M. Wcislo, D. Compagnone, M. Trojanowicz, Bioelectrochemistry 71, 91 (2007)CrossRefGoogle Scholar
  30. [30]
    I. PoŁeć, L. Cieślak, B. Śledziński, H. Ksycińska, Pestic. Sci. 53, 165 (1998)CrossRefGoogle Scholar
  31. [31]
    C.E. Berkman, C.M. Thompson, S.R. Perrin, Chem. Res. Toxicol. 6, 718 (1993CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Marzena Kaniewska
    • 1
  • Justyna Jońca
    • 1
  • Iwona Połeć
    • 2
  • Tomasz Sikora
    • 1
  • Jean-Louis Marty
    • 3
  • Marek Trojanowicz
    • 1
  1. 1.Department of ChemistryUniversity of WarsawWarsawPoland
  2. 2.Institute of Industrial Organic ChemistryWarsawPoland
  3. 3.BioMem — IMAGESUniversity of PerpignanPerpignan CedexFrance

Personalised recommendations