Skip to main content
Log in

Amphiphilic azopolymers capable to generate photo-sensitive micelles

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

Amphiphilic macromolecular micelles are advantageous for drug delivery applications due to the decrease of side-effects, ease of screening drugs against degradation, long-term stability, targeted delivery and control of the amount of the released drug. A series of amphiphilic azo-polymers having a flexible or rigid main-chain were synthesized and characterized. The presence of chlorobenzyl side-groups allowed both the easy bonding of photo-sensitive or hydrophilic groups and good control of the degree of substitution. The chemical structure was confirmed by 1H-NMR. The critical concentration of aggregation (CCA) was calculated using the fluorescence emission spectrum of pyrene. The interest was focused on a preliminary study concerning the disaggregation capacity of micelles under UV irradiation. The presence of micellar aggregates was confirmed by DLS and SEM and different organization of the amphiphilic polymers was evidenced depending on polymers concentration and polymers structure. In low polymer concentrations in water predominantly globular aggregates were formed. The increase in concentration increased the polydispersity index due to the fusion of micelles and formation of associates of globular aggregates, inter-micellar associates (clusters) and vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Francis, M. Cristea, F.M. Winnik, Pure Appl. Chem. 76, 1321 (2004)

    Article  CAS  Google Scholar 

  2. L. Prati, M. Rossi, S. Cammas-Marion, T. Okano, K. Kataoka, Colloid Surface B: Biointerfaces 16, 207 (1999)

    Article  Google Scholar 

  3. M. Adams, A. Lavasanifar, G.S. Kwon, J. Pharm. Sci. 92, 1343 (2003)

    Article  CAS  Google Scholar 

  4. R. Haag, Angew. Chem. Int. Ed. 43, 278 (2004)

    Article  CAS  Google Scholar 

  5. P. Rigler, W. Meier, J. Am. Chem. Soc. 128, 367 (2005)

    Article  Google Scholar 

  6. C.J.F. Rijcken, O. Soga, W.E. Hennink, C.F. van Nostrum, J. Controlled Release 120, 131 (2007)

    Article  CAS  Google Scholar 

  7. J. Jiang, X. Tong, Y. Zhao, J. Am. Chem. Soc. 127, 8290 (2005)

    Article  CAS  Google Scholar 

  8. C.T. Lee, K.A. Smith, T.A. Hatton, Macromolecules 37, 5397 (2004)

    Article  CAS  Google Scholar 

  9. B. Dunn, J.I. Zink, Chem. Mater. 9, 2280 (1997)

    Article  CAS  Google Scholar 

  10. E. Yoshida, M. Otha, Colloid Polym. Sci. 285, 431 (2007)

    Article  CAS  Google Scholar 

  11. G. Sudesh Kumar, D.C Neckers, Chem. Rev. 89, 1915 (1989)

    Article  CAS  Google Scholar 

  12. Y. Zong, K. Tawa, B. Menges, J. Ruhe, W. Knoll, Langmuir 21, 7036 (2005)

    Article  CAS  Google Scholar 

  13. M. Irie, W. Schnabel, Macromolecules 14, 1246 (1981)

    Article  CAS  Google Scholar 

  14. N. Ma, Y. Wang, Z. Wang, X. Zhang, Langmuir 22, 3906 (2006)

    Article  CAS  Google Scholar 

  15. A. Sobolewska, A. Miniewicz, D. Sek, Cent. Eur. J. Chem. 4, 266 (2006)

    Article  CAS  Google Scholar 

  16. Y. Deng, N. Li, Y. He, X. Wang, Macromolecules 40, 6669 (2007)

    Article  CAS  Google Scholar 

  17. S. Bai, Y. Zhao, Macromolecules 34, 9032 (2001)

    Article  CAS  Google Scholar 

  18. D. Wang, J. Liu, G. Ye, X. Wang, Polymer 50, 418 (2009)

    Article  CAS  Google Scholar 

  19. W. Su, Y. Luo, Q. Yan, S. Wu, K. Han, Q. Zhang, Y. Gu, Y. Li, Macromol. Rapid Commun. 28, 1251 (2007)

    Article  CAS  Google Scholar 

  20. H. Yu, A. Shishido, T. Ikeda, T. Iyoda, Macromol. Rapid Commun. 26, 1594 (2005)

    Article  CAS  Google Scholar 

  21. Y. Lin, P. Alexandridis, J. Phys. Chem. B 106, 10845 (2002)

    Article  CAS  Google Scholar 

  22. N. Hurduc, R. Enea, A.M. Rezmerita, I. Moleavin, M. Cristea, D. Scutaru, In: F. Ganachaud, S. Boileau, B. Boury (Eds.), Silicon Based Polymers (Springer, Netherlands, 2008) 65

    Chapter  Google Scholar 

  23. D. Anghel, F. Winnik, N. Galatanu, Coll. Surf. A: Phys. Eng. Aspects 149, 339 (1999)

    Article  CAS  Google Scholar 

  24. F.M. Winnik, S.T.A. Regismond, E.D. Goddard, Coll. Surf. A: Phys. Eng. Aspects 106, 243 (1996)

    Article  CAS  Google Scholar 

  25. A. Domínguez, A. Fernández, N. González, E. Iglesias, L. Montenegro, J. Chem. Ed. 74, 1227 (1997)

    Article  Google Scholar 

  26. K.P. Ananthapadmanabhan, E.D. Goddard, N.J. Turro, P.L. Kuo, Langmuir 1, 352 (1985)

    Article  Google Scholar 

  27. I. Moleavin, S. Grama, I. Carlescu, D. Scutaru, N. Hurduc, Polym. Bull. 65, 69 (2010)

    Article  CAS  Google Scholar 

  28. J. Kevelam, J. Engberts, J. Colloid and Interface Science, 178, 87 (1996)

    Article  CAS  Google Scholar 

  29. S. Wang, X. Wang, L. Li, R. Advincula, J. Org. Chem. 40, 179 (2004) 30

    Google Scholar 

  30. K. Kazmierski, N. Hurduc, G. Sauvet, J. Chojnowski, J. Polym. Sci.: Part A: Polym. Chem. 42, 1682 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolae Hurduc.

About this article

Cite this article

Moleavin, I., Ibanescu, C., Hodorog-Rusu, A. et al. Amphiphilic azopolymers capable to generate photo-sensitive micelles. cent.eur.j.chem. 9, 1117–1125 (2011). https://doi.org/10.2478/s11532-011-0102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-011-0102-y

Keywords

Navigation