Skip to main content
Log in

Determination of 137Cs and 85Sr transport parameters in fucoidic sand columns and groundwater system

  • Invited Article
  • Published:
Central European Journal of Chemistry

Abstract

The determination is based on the evaluation of experimentally obtained breakthrough curves using the erfc-function. The first method is founded on the assumption of a reversible linear sorption/desorption isotherm of radionuclides on solid phase with constant distribution and retardation coefficients, whereas the second one is based on the assumption of a reversible non-linear sorption/desorption isotherm described with the Freundlich equation, i.e., with non-constant distribution and retardation coefficients. Undisturbed cores of 5 cm in diameter and 10 cm long were embedded in the Eprosin-type cured epoxide resin column. In this study the so-called Cenomanian background groundwater was used as transport medium. The groundwater containing radionuclides was introduced at the bottom of the columns at about 4 mL h−1 constant flow-rate. The results have shown that in the investigated fucoidic sands: (i) the sorption was in principle characterized by linear isotherms and the corresponding retardation coefficients of 137Cs and 85Sr, depending on the type of sample, were approximately 13 or 44 and 5 or 15, respectively; (ii) the desorption was characterized by non-linear isotherms, and the retardation coefficients of the same radionuclides ranged between 23–50 and 5–25, respectively. The values of the hydrodynamic dispersion coefficients of these radionuclides varied between 0.43–1.2 cm2 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Franta et al., In: B.J. Merkel, A. Hasche-Berger (Eds.), Some approaches to the study of contamination in the fucoid sandstone at Stráž pod Ralskem site — Northern Bohemia, Czech Republic Uranium Mining and Hydrogeology (Springer-Verlag, Berlin Heidelberg 2008) 71

    Google Scholar 

  2. T. Pačes et al., In: W.M. Edmunds, P. Shand (Eds.), The Cenomanian and Turonian Aquifers of the Bohemian Cretaceous Basin, Czech Republic, Natural Groundwater Quality (Blackwell Publishing, Malden-Oxford-Victoria, 2008)

    Google Scholar 

  3. C.G.J. Appello, D. Postma, Geochemistry, groundwater and pollution (Balkema, Rotterdam, 1993) 535

    Google Scholar 

  4. W.R. Alexander, P.A. Smith, I.G. McKinley, In: E.M. Scott (Ed.), Modeling radionuclide transport in the geological environment, Modeling Radioactivity in the Environment (Elsevier, Amsterdam, 2003) 109

    Google Scholar 

  5. N. Cadelli et al., Performance Assessment of Geological Isolation Systems (PAGIS), (Commission of European Communities, Luxembourg, 1988) EUR 11775, 46

    Google Scholar 

  6. A.J. Valocchi, Water. Resour. Res. 21, 808 (1985)

    Article  CAS  Google Scholar 

  7. J.E. Saiers, G.M. Hornberger, J. Contam. Hydrol 22, 255 (1996)

    Article  CAS  Google Scholar 

  8. M. Flury, Sz. Czigány, Gang Chen, J.B. Harsh, J. Contam. Hydrol. 71, 111 (2004)

    Article  CAS  Google Scholar 

  9. D.J. Sims, W.S. Andrews, K.A.M. Creber, X. Wang, J. Radioanal. Nucl. Chem. 263, 619 (2005)

    Article  CAS  Google Scholar 

  10. S. Szenknect, C. Ardois, J.P. Gaudet, V. Barthes, J. Contam. Hydrol. 76, 139 (2005)

    Article  CAS  Google Scholar 

  11. Š. Palágyi, K. Štamberg, Radiochim. Acta 98, 359 (2010)

    Article  Google Scholar 

  12. Š. Palágyi, K. Štamberg, H. Vodičková, J. Radioanal. Nucl. Chem. 283, 629 (2010)

    Article  Google Scholar 

  13. Š. Palágyi, P. Franta, H. Vodičková, J. Radioanal. Nucl. Chem. 286, 317 (2010)

    Article  Google Scholar 

  14. Š. Palágyi, A. Laciok, Czechoslov. J. Phys. 56, D483 (2006)

    Google Scholar 

  15. J. Spanier, K.B. Oldham, The Error Function erf(x) and Its Complement erfc(x) (Chapter 40) and The exp(x) and erfc(√x) and Related Functions (Chapter 41). In: An Atlas of Functions (Hemisphere, Washington, DC, 1987) 385 and 395

    Google Scholar 

  16. E.T. Whittaker, G.N. Watson, A Course in Modern Analysis, 4th edition (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  17. K. Ebert, H. Ederer, Computeranwendungen in der Chemie (VCH Verlagsgesellschaft mbH, Weinheim, 1985) (In German)

    Google Scholar 

  18. A.L. Herbelin, J.C. Westall, FITEQL — A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data, Version 3.2., Report 94-01 (Department of Chemistry, Oregon State University, Corvallis, Oregon, 1996)

    Google Scholar 

  19. L. Dvořák, M. Ledvinka, M. Sobotka, Famulus 3.1. (Computer Equipment, Prague, 1991)

    Google Scholar 

  20. P. Germann, In: M.G. Anderson, P.D. Bates (Eds), A hydromechanical approach to Preferential Flow (Chapter 10), Model Validation - Perspectives in Hydrological Sciences (John Wiley & Sons, Chichester, 2001) 233

    Google Scholar 

  21. V. Brendler, res3T — Rossendorf Expert System for Surface and Sorption Thermodynamics, 2nd Release from January 24, 2006 (Forschungszentrum Rossendorf e.V., Institute of Radiochemistry, Dresden, Germany)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Štefan Palágyi.

About this article

Cite this article

Palágyi, Š., Štamberg, K. Determination of 137Cs and 85Sr transport parameters in fucoidic sand columns and groundwater system. cent.eur.j.chem. 9, 798–807 (2011). https://doi.org/10.2478/s11532-011-0076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-011-0076-9

Keywords

Navigation