Skip to main content
Log in

Investigation of 6-fluoroquinolones activity against Mycobacterium tuberculosis using theoretical molecular descriptors: a case study

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

A quantitative structure-activity relationship (QSAR) study on a set of 66 structurally-similar 6-fluoroquinolones was performed using a large pool of theoretical molecular descriptors. Ab initio geometry optimizations were carried out to reproduce the geometrical and electronic structure parameters. The resulting molecular structures were confirmed to be minima via harmonic frequency calculations. Obtained atomic charges, HOMO and LUMO energies, orbital electron densities, dipole moment, energy and many other properties served as quantum-chemical descriptors. A multiple linear regression (MLR) technique was applied to generate a linear model for predicting the biological activity, Minimal Inhibitory Concentration (MIC), treated as negative decade logarithm, (pMIC). The heuristic method was used to optimize the model parameters and select the most significant descriptors. The model was tested internally using the CV LOO procedure on the training set and validated against the external validation set. The result (Q 2 ext = 0.7393), which was obtained on an external, previously excluded validation data set, shows the predictive performances of this model (R 2 tr = 0.7416, Q 2 tr = 0.6613) in establishing (Q)SAR of 6-fluoroquinolones. This validated model could be proficiently used to design new 6-fluoroquinolones with possible higher activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Dye, S. Scheele, P. Dolin, V. Pathania, M.C. Raviglione, J. Am. Med. Assoc. 282, 677 (1999)

    Article  CAS  Google Scholar 

  2. N.V. Bhanu, D. van Soolingen, J.D.A. van Embden, P. Seth, Diagn. Micr. Infec. Dis. 48, 107 (2004)

    Article  CAS  Google Scholar 

  3. O. Dussurget, M. Rodriguez, I. Smith, Tubercle. Lung. Dis. 79(2), 99 (1998)

    Article  CAS  Google Scholar 

  4. S.K. Field, D. Fisher, R.L. Cowie, Chest 126, 566 (2004)

    Article  Google Scholar 

  5. J.M. Beale, In: J.H. Block, J.M. Beale (Eds.), Whilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, 11th edition (Lippincott Williams & Wilkins, Baltimore, MD, 2004) 266

    Google Scholar 

  6. Y. Zhang, K.P. -Martens, S. Denkin, Drug Discov. Today 11, 21 (2006)

    Article  CAS  Google Scholar 

  7. G. Anquetin, J. Greiner, P. Vierling, Curr. Drug Targets: Infect. Disord. 5, 227 (2005)

    Article  CAS  Google Scholar 

  8. M.J. Suto, J.M. Domagala. G.E. Roland, G.B. Mailloux, M.A. Cohen, J. Med. Chem. 35, 4745 (1992)

    Article  CAS  Google Scholar 

  9. L.R. Peterson, Clin. Infect. Dis. 33(Suppl. 3), S180 (2001)

    Article  CAS  Google Scholar 

  10. A.A. Miles, Bull. World Hlth. Org. 6, 131 (1952)

    CAS  Google Scholar 

  11. J.M. Beale, In: J.H. Block, J.M. Beale (Eds.), Whilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, 11th edition (Lippincott Williams & Wilkins, Baltimore, MD, 2004) 247

    Google Scholar 

  12. J.J. Champoux, Annu. Rev. Biochem. 70, 369 (2001)

    Article  CAS  Google Scholar 

  13. H. Peng, K.J. Marians, J. Biol. Chem. 268, 24481 (1993)

    CAS  Google Scholar 

  14. R.J. Reece, A. Maxwell, Crit. Rev. Biochem. Mol. 26, 335 (1991)

    Article  CAS  Google Scholar 

  15. C. Levine, H. Hiasa, K.J. Marians, Biochim. Biophys. Acta 1400, 29 (1998)

    CAS  Google Scholar 

  16. D.C. Hooper, Drugs 58(suppl. 2), 6 (1999)

    Article  CAS  Google Scholar 

  17. M. Oblak, M. Kotnik, T. Solmajer, Curr. Med. Chem. 14, 2033 (2007)

    Article  CAS  Google Scholar 

  18. N. Minovski, M. Vračko, T. Šolmajer, Mol. Divers. 15(2), 417 (2011)

    Article  CAS  Google Scholar 

  19. Clinical Laboratory Standards Institute/NCCLS. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard. CLSI/NCCLS document M24-A (Clinical Laboratory Standards Institute, Wayne PA, 2003)

    Google Scholar 

  20. ChemBioOffice Ultra v11.0, Cambridgesoft (Cambridge, England, 2008) http://www.cambridgesoft.com/software/ChemBioOffice

  21. R. Todeschini, V. Consonni, A. Mauri, M. Pavan, DRAGON Version 5.4 (Talete srl, Milan, Italy) http://www.talete.mi.it/dragon.htm

  22. A.R. Katritzky, V.S. Lobanov, M. Karelson, CODESSA, Training Manual (University of Florida, Gainsville, 1994)

    Google Scholar 

  23. A.R. Katritzky, V.S. Lobanov, M. Karelson, CODESSA, Reference Manual (University of Florida, Gainsville, 1994)

    Google Scholar 

  24. G. Schaftenaar, J.H. Noordik, J. Comput.-Aided Mol. Des. 14, 123 (2000)

    Article  CAS  Google Scholar 

  25. M.J. Frisch et al., Gaussian 03, Revision A.02 (Gaussian, Inc., Wallingford CT, 2004)

    Google Scholar 

  26. C.C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951)

    Article  CAS  Google Scholar 

  27. R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54, 724 (1971)

    Article  CAS  Google Scholar 

  28. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)

    Article  CAS  Google Scholar 

  29. B.H. Besler BH, K.M. Jr. Merz, P.A. Kollman, J. Comp. Chem. 11, 431 (1990)

    Article  Google Scholar 

  30. P. Thanikaivelan, V. Subramanian, J.R. Rao, B.U. Nair, Chem. Phys. Lett. 23, 59 (2000)

    Article  Google Scholar 

  31. N. Minovski, MinoSuite v2.0, Laboratory for Chemometrics (National Institute of Chemistry, Ljubljana, Slovenia, 2009)

    Google Scholar 

  32. J. Rebehmed, F. Barbault, C. Teixeira, F. Maurel, J. Comput. Aided. Mol. Des. 22, 831 (2008)

    Article  CAS  Google Scholar 

  33. V. Consonni, D. Ballabio, R. Todeschini, J. Chem. Inf. Model. 49, 1669 (2009)

    Article  CAS  Google Scholar 

  34. A.R. Katritzky, O.V. Kulshyn, I. Stoyanova-Slavova, D.A. Dobchev, M. Kuanar, D.C. Fara, M. Karelson, Bioorg. Med. Chem. 14, 2333 (2006)

    Article  CAS  Google Scholar 

  35. A.R. Katritzky, L.M. Pacureanu, D.A. Dobchev, D.C. Fara, P.R. Duchowicz, M. Karelson, Bioorg. Med. Chem. 14, 4987 (2006)

    Article  CAS  Google Scholar 

  36. A.R. Katritzky, D.A. Dobchev, I. Tulp, M. Karelson, D.A. Carlson, Bioorg. Med. Chem. Lett. 16, 2306 (2006)

    Article  CAS  Google Scholar 

  37. A.R. Katritzky, D.A. Dobchev, E. Hur, D. Fara, M. Karelson, Bioorg. Med. Chem. 13, 1623 (2005)

    Article  CAS  Google Scholar 

  38. G. Schüürmann, E. Ralf-Uwe, J. Chen, B. Wang, R. Kühne, J. Chem. Inf. Model. 48(11), 2140 (2008)

    Article  Google Scholar 

  39. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships [(Q)SAR] Models (Head of Publication Service, OECD, Paris, France, 2007) http://www.oecd.org/dataoecd/55/35/38130292.pdf

    Google Scholar 

  40. J. Jaworska, N. Nikolova-Jeliazkova, T. Aldenberg, Altern. Lab. Anim. 33, 445 (2005)

    CAS  Google Scholar 

  41. J. Jaworska, M. Comber, C.V. Leewen, C. Auer, Environ. Health Perspect. 11, 1358 (2003)

    Article  Google Scholar 

  42. H. Liu, E. Papa, P. Gramatica, Chem. Res. Toxicol. 19, 1540 (2006)

    Article  CAS  Google Scholar 

  43. T.I. Netzeva et al., Altern. Lab. Anim. 33, 155 (2005)

    CAS  Google Scholar 

  44. L. Eriksson et al., Environ. Health Perspect. 11, 1361 (2003)

    Article  Google Scholar 

  45. E. Papa, S. Kovarich, P. Gramatica, QSAR Comb. Sci. 28(8), 790 (2009)

    Article  CAS  Google Scholar 

  46. L.A. Mitscher, Chem. Rev. 105, 559 (2005)

    Article  CAS  Google Scholar 

  47. L.A. Mitscher, Z. K. Ma, In: A.R. Ronald, D.E. Low(Eds.), Fluoroquinolone Antibiotics (Birkhaeuser, Basel, 2003) 11

    Google Scholar 

  48. M.R. Jacobs, Curr. Pharm. Des. 10, 3213 (2004)

    Article  CAS  Google Scholar 

  49. L.R. Peterson, Clin. Infect. Dis. 33, S180 (2001)

    Article  CAS  Google Scholar 

  50. B. Ledoussal et. al, Curr. Med. Chem.: Agents 2, 13 (2003)

    Article  CAS  Google Scholar 

  51. M.C. Bagchi, D. Mills, S.C. Basak, J. Mol. Model. 13, 111 (2007)

    Article  CAS  Google Scholar 

  52. M. Randić, J. Chem. Inf. Comput. Sci. 41, 639 (2001)

    Google Scholar 

  53. J.G. Topliss, R.P. Edwards, J. Med. Chem. 22, 1238 (1979)

    Article  CAS  Google Scholar 

  54. J.G. Heddle et al., Nucleosides, Nucleotides Nucleic Acids 19, 1249 (2000)

    Article  CAS  Google Scholar 

  55. I. Laponogov et al., Nat. Struct. Mol. Biol. 16,6, 667 (2009)

    Article  CAS  Google Scholar 

  56. I. Laponogov et al., Plos one 5,6, e11338 (2010)

    Article  Google Scholar 

  57. J. Piton et al., Plos one 5, 8, e12245 (2010)

    Article  Google Scholar 

  58. J.T. Smith, Eur. J. Clin. Microbiol. 3, 347 (1984)

    Article  CAS  Google Scholar 

  59. P. Gramatica, QSAR Comb. Sci. 26, 694 (2007)

    Article  CAS  Google Scholar 

  60. T. Yamamoto et al., Toxicol. In Vitro 15, 721 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Minovski.

Electronic supplementary material

About this article

Cite this article

Minovski, N., Jezierska-Mazzarello, A., Vračko, M. et al. Investigation of 6-fluoroquinolones activity against Mycobacterium tuberculosis using theoretical molecular descriptors: a case study. cent.eur.j.chem. 9, 855–866 (2011). https://doi.org/10.2478/s11532-011-0071-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-011-0071-1

Keywords

Navigation