Skip to main content
Log in

The comparison of sample extraction procedures for the determination of cations in soil by IC and ICP-AES

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

This paper presents the extraction of cations from a soil sample, type ranker on serpentinite, in deionized water, by use of three different extraction techniques. The first extraction technique included the use of a rotary mixer, the second technique involved the use of a microwave digestion system with different extraction temperatures, and the third technique employed an ultrasonic bath with different extraction times. Ion chromatography was used for determining the concentration of Li, Na, K, Ca, Mg and ammonium ions in soil extracts with subsequent determination of concentrations for all cations, except for ammonium ion extraction, conducted by Inductively Coupled Plasma-Atomic Emission Spectrometry. The results of cation extractions showed that microwave assisted extraction was most efficient for the Li, Na, K, Ca, Mg, Co, Mn, Ni, Pb and ammonium ions. Use of a rotary mixer for extraction was most efficient for Cd and Zn ions, while use of ultrasound bath was most efficient for Cr, Cu, Fe and Al ions. Several times higher amount of cations extracted by the most efficient, compared to the second best technique, under optimal conditions, were noticed in the case of: Ca, Mg, Co, Mn, Fe, Al, and Zn ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.L. Bohn, B.L. Mc Neal, G.A. O’Connor, Soil Chemistry, 3rd edition (John Willey and Sons, New York, 2001)

    Google Scholar 

  2. M. Flues et al., J. Braz. Chem. Soc. 15, 496 (2004)

    Article  CAS  Google Scholar 

  3. A. Bibak, Commun. in Soil Sci. Plant Anal. 25, 3229 (1994)

    Article  CAS  Google Scholar 

  4. G. Rauret, Talanta 46, 449 (1998)

    Article  CAS  Google Scholar 

  5. A.V. Filgueiras, I. Lavilla, C. Bendicho, J. Environ. Monit. 4, 823 (2002)

    Article  CAS  Google Scholar 

  6. B. Krasnodębska-Ostręga, H. Emons, J. Golimowski, J. Soils and Sediments 4, 43 (2004)

    Article  Google Scholar 

  7. A. Zimmerman, D.C. Weindorf, Int. J. Anal. Chem. Art. ID: 387803 (2010)

  8. C. Gleyzes, S. Tellier, M. Astruc, Trends Anal. Chem. 21, 451 (2002)

    Article  CAS  Google Scholar 

  9. O. Schramel, B. Michalke, A. Kettrup, Sci. Tot. Env. 263, 11 (2000)

    Article  CAS  Google Scholar 

  10. A. Schöning, G. Brümmer, J. Plant Nutr. Soil Sci. 171, 392 (2008)

    Article  Google Scholar 

  11. P. Tlusoš, J. Száková, A. Stárková, D. Pavliková, Cent. Eur. J. Chem. 3, 830 (2005)

    Article  Google Scholar 

  12. E. De Oliveira, J. Braz. Chem. Soc. 14, 174 (2003)

    Google Scholar 

  13. M.V. Silva, F.W. Costa, V. Visentainer, E.N. Souza, C.C. Oliveira, J. Braz. Chem. Soc. 21, 1045 (2010)

    Article  CAS  Google Scholar 

  14. A. Mentler, H. Mayer, P. Strauß, W.E.H. Blum, Int. Agrophysics, 18, 39 (2004)

    Google Scholar 

  15. P. Sorys, E. Zielewicz-Madej, Mol. Quantum Acoustics 28, 247 (2007)

    Google Scholar 

  16. H. Mayer et al., Int. Agrophysics 16, 53 (2002)

    Google Scholar 

  17. P.L. Buldini, D. Tonelli, F. Valentini, Anal. Lett. 42, 483 (2009)

    Article  CAS  Google Scholar 

  18. A. Lakhani, R.S. Parmar, G.S. Satsangi et al, Environ. Monit. Assess. 133, 435 (2007)

    Article  CAS  Google Scholar 

  19. S.M. Hassan, A.W. Garrison, Chem. Spec. Bioavail. 8, 85 (1996)

    CAS  Google Scholar 

  20. T. Umemura, R. Kitaguchi, H. Haraguchi, Anal. Che. 70, 936 (1998)

    Article  CAS  Google Scholar 

  21. B. Takano, S.M. Fazlullin, P. Delmelle, J. Volcanol. Geoth. Res. 97, 497 (2000)

    Article  CAS  Google Scholar 

  22. W. Salomons, U. Förstner, Metals in the Hydrocycle (Springer-Verlag, Berlin, 1984)

    Google Scholar 

  23. A. R. Đorđević, PhD thesis, University of Belgrade (Belgrade, Serbia, 1997) (in Serbian)

  24. S.S. Hwang, J.S. Park, W. Namkoong, Ind. Eng. Chem. 13, 650 (2007)

    CAS  Google Scholar 

  25. A. Väisänen, A. Ilander, Anal. Chim. Acta 570, 93 (2006)

    Article  Google Scholar 

  26. S.C.C. Arruda, P.M. Rodriguez, M.A.Z. Arruda, J. Braz. Chem. Soc. 14, 149 (2003)

    Article  Google Scholar 

  27. D.S. Júnior, F.J. Krug, M.de G. Pereira, M. Korn, App. Spectr. 41, 305 (2006)

    Article  Google Scholar 

  28. C. Bendicho, I. Lavilla, Applications of Ultrasound-Assisted Metal Extractions, Encyclopedia of Separation Science (Academic Press, London, 2000)

    Google Scholar 

  29. B. Pérez-Cid, I. Lavilla, C. Bendicho, Anal. Chim. Acta 360, 35 (1998)

    Article  Google Scholar 

  30. B. Pérez-Cid, I. Lavilla, C. Bendicho, Int. J. Anal. Chem. 73, 79 (1999)

    Article  Google Scholar 

  31. E. Campos, E. Barahona, M. Lachica, M.D. Mingorance, Anal. Chim. Acta 369, 235 (1998)

    Article  CAS  Google Scholar 

  32. M. Ginepro, M. Gulmini, G. Ostacoli, V. Zelano, Int. J. Environ. Anal. Chem. 63,147 (1996)

    Article  CAS  Google Scholar 

  33. M. Gulmini, G. Ostacoli, V. Zelano, A. Torazzo, Analyst 119, 2075 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana M. Stanišić.

About this article

Cite this article

Stanišić, S.M., Ignjatović, L.M., Manojlović, D.D. et al. The comparison of sample extraction procedures for the determination of cations in soil by IC and ICP-AES. cent.eur.j.chem. 9, 481–491 (2011). https://doi.org/10.2478/s11532-011-0031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-011-0031-9

Keywords

Navigation