Skip to main content
Log in

Aqueous phenol and ethylene glycol solutions in electrohydrodynamic liquid bridging

  • Invited Paper
  • Published:
Central European Journal of Chemistry

An Erratum to this article was published on 04 June 2011

Abstract

The formation of aqueous bridges containing phenol and ethylene glycol as well as bisphenol-A, hydrochinone and p-cresol under the application of high voltage DC (“liquid bridges”) is reported. Detailed studies were made for phenol and glycol with concentrations from 0.005 to 0.531 mol L−1. Conductivity as well as substance and mass transfers through these aqueous bridges are discussed and compared with pure water bridges. Previously suggested bidirectional mass transport is confirmed for the substances tested. Anodic oxidation happens more efficiently when phenol or glycol are transported from the cathode to the anode since in this case the formation of a passivation layer or electrode poisoning are retarded by the electrohydrodynamic (EHD) flow. The conductivity in the cathode beaker decreases in all experiments due to electrophoretic transport of naturally dissolved carbonate and bicarbonate to the anode. The observed electrochemical behavior is shortly discussed and compared to known mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.G. Armstrong, The Electrical Engineer 10, 154 (1893)

    Google Scholar 

  2. E.C. Fuchs, J. Woisetschläger, K. Gatterer, E. Maier, R. Pecnik, G. Holler, H. Eisenkölbl, J. Phys. D: Appl. Phys. 40, 6112 (2007)

    Article  CAS  Google Scholar 

  3. E.C. Fuchs, K. Gatterer, G. Holler, J. Woisetschläger, J. Phys. D: Appl. Phys. 41, 185502 (2008)

    Article  Google Scholar 

  4. E.C. Fuchs, B. Bitschnau, J. Woisetschläger, E. Maier, B. Beuneu, J. Teixeira, J. Phys. D: Appl. Phys. 42, 065502 (2009)

    Article  Google Scholar 

  5. E.C. Fuchs, P. Baroni, B. Bitschnau, L. Noirez, J. Phys. D: Appl. Phys. 43, 105502 (2010)

    Article  Google Scholar 

  6. J. Woisetschläger, K. Gatterer, E.C. Fuchs, Exp. Fluids 48, 121 (2010)

    Article  Google Scholar 

  7. H. Nishiumi, F. Honda, Res. Let. Phys. Chem. (2009) art. ID 371650

  8. M. Tello, R. Garcia, J.A. Martín-Gago, N.F. Martínez, M.S. Martín-González, L. Aballe, A. Baranov, L. Gegoratti, Advanced Materials 17, 1480 (2005)

    Article  CAS  Google Scholar 

  9. T. Cramer, F. Zerbetto, R. Garcia, Langmuir 24, 6116 (2008)

    Article  CAS  Google Scholar 

  10. A. Widom, J. Swain, J. Silverberg, S. Sivasubramanian, Y.N. Srivastava, Phys. Rev. E 80, 016301 (2009)

    Article  CAS  Google Scholar 

  11. A. Castellanos, Electrohydrodynamics, International Centre for Mechanical Sciences, CISM Courses and Lectures No.380 (Springer, Wien, New York, 1998) ISBN 3-211-83137-1

    Google Scholar 

  12. J. Mrázek, J. V. Burda, J. Chem. Phys. 125, 194518 (2006)

    Article  Google Scholar 

  13. W.L. Jorgensen, J. Tirado-Rives, PNAS Proc. Natl. Acad. Sci. 102, 6685 (2005)

    Google Scholar 

  14. E. Del Giudice, Journal of Physics: Conf. Ser. 67, 012006 (2006)

    Article  Google Scholar 

  15. T. Head-Gordon, M.E. Johnson, PNAS Proc. Natl. Acad. Sci. 21, 7973 (2006)

    Article  Google Scholar 

  16. H.E. Stanley, S.V. Buldyrev, G. Franzese, N. Giovambattista, F.W. Starr, Phil. Trans. R. Soc. A 363, 509 (2005)

    Article  CAS  Google Scholar 

  17. C.A. Chatzidimitriou-Dreismann, T.A. Redah, R.M.F. Streffer, J. Mayers, Phys. Rev. Lett. 79, 2839 (1997)

    Article  CAS  Google Scholar 

  18. R. Arani, I. Bono, E. Del Giudice, G. Preparata, International Journal of Modern Physics B 9, 1813 (1995)

    Article  CAS  Google Scholar 

  19. E. Del Giudice, E.C. Fuchs, G. Vitiello, Water (Seattle) 2, 69 (2010) ISSN 2155-8434

    Google Scholar 

  20. R.C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M.E. Fontanella, F. Saija, J. Phys. D: Appl. Phys. 43, 175405 (2010)

    Article  Google Scholar 

  21. E.C. Fuchs, MDPI Water 2, 381 (2010)

    Article  CAS  Google Scholar 

  22. E.C. Fuchs, L.L.F. Agostinho, A. Wexler, R.M. Wagterveld, J. Tuinstra, J. Woisetschläger, J. Phys. D: Appl. Phys. 44 025501 (2011)

    Article  Google Scholar 

  23. G.H. Pollack, Cells, gels and the engine of life (Ebener & Sons, Seattle WA, 2001) ISBN 0-9626895-2-1

    Google Scholar 

  24. K. Ovchinnikova, G.H. Pollack, Langmuir 25(1), 542 (2009)

    Article  CAS  Google Scholar 

  25. H. R. Corti, Langmuir 25(11), 6587 (2009)

    Article  CAS  Google Scholar 

  26. K. Ovchinnikova, G.H. Pollack, Langmuir 25(18), 11202 (2009)

    Article  CAS  Google Scholar 

  27. H.R. Corti, Langmuir 25(18), 11203 (2009)

    Article  CAS  Google Scholar 

  28. E.C. Fuchs, L.L.F. Agostinho, M. Eisenhut, J. Woisetschläger, Proc. SPIE 7376, 73761E1 (2010) DOI:10.1117/12.868994

    Google Scholar 

  29. F. Saija, F. Aliotta, M.E. Fontanella, M. Pochylski, G. Salvato, C. Vasi, R.C. Ponterio, J. Chem. Phys. 133, 081104 (2010)

    Article  CAS  Google Scholar 

  30. A.G. Marin, D. Lohse, Phys. Fluids 22, 122104 (2010)

    Article  Google Scholar 

  31. A.A. Aerov, Why the Water Bridge does not collapse, arXiv:1012.1592v1 (2010)

  32. M. Gattrell, D.W. Kirk, J. Electrochem. Soc. 140(6), 1534 (1993)

    Article  CAS  Google Scholar 

  33. B. Fleszar, J. Ploszynska, Electrochimia Acta 30(1), 31 (1985)

    Article  CAS  Google Scholar 

  34. D. Fino, C. Carlesi Jara, G. Saracco, V. Specchia, P. Spinelli, J, Appl, Electrochem. 35, 405 (2005)

    Article  CAS  Google Scholar 

  35. Ch. Comminellis, C. Pulgrain, J. Appl. Electrochem. 21, 703 (1991)

    Article  Google Scholar 

  36. S. Andreescu, D. Andreescu, O.A. Sadik, Electrochem. Comm. 5, 681 (2003)

    Article  CAS  Google Scholar 

  37. R.C. Kolle, D.C. Johnson, Anal. Chem, 51(6), 741 (1979)

    Article  Google Scholar 

  38. R. Menini, Y.M. Henuset, J. Fournier, J. Appl. Electrochem. 35, 625 (2005)

    Article  CAS  Google Scholar 

  39. X.-Y. Li, Y.-H. Cui, Y.-J. Feng, Z.-M. Xie, J.-D. Gu, Water Res. 39, 1972 (2005)

    Article  CAS  Google Scholar 

  40. P. Canizares, J.A. Domínguez, M.A. Rodrigo, J. Villaseñor, J. Rodríguez, Ind. Eng. Chem. Res. 38(10), 3779 (1999)

    Article  CAS  Google Scholar 

  41. R.B. de Lima, V. Paganin, T. Iwasita, W. Vielstich, Electrochimica Acta 49, 85 (2003)

    Article  Google Scholar 

  42. K. Matsuoka, Electrochimica Acta 51, 1085 (2005)

    Article  CAS  Google Scholar 

  43. A. Kelaidopoulou, E. Abelidou, A. Papoutsis, E.K. Polychroniadis, G. Kokkinidis, J. Appl. Electrochem. 28, 1101 (1998)

    Article  CAS  Google Scholar 

  44. P.A. Christensen, A. Hamnett, J. Electroanal. Chem. 260, 341 (1989)

    Article  Google Scholar 

  45. F. Hahn, B. Beden, F. Kadirgan, Electrochimica Acta. 23, 299 (1978)

    Article  Google Scholar 

  46. R. Parsons, T. VanderNoot, J. Electroanal. Chem. 257, 9 (1988)

    Article  CAS  Google Scholar 

  47. J. Kendall, J. Am. Chem. Soc. 38, 1480 (1916)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar C. Fuchs.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.2478/s11532-011-0039-1

About this article

Cite this article

Eisenhut, M., Guo, X., Paulitsch-Fuchs, A.H. et al. Aqueous phenol and ethylene glycol solutions in electrohydrodynamic liquid bridging. cent.eur.j.chem. 9, 391–403 (2011). https://doi.org/10.2478/s11532-011-0029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-011-0029-3

Keywords

Navigation