Skip to main content
Log in

SERS approach for Zn(II) detection in contaminated soil

  • Short Communication
  • Published:
Central European Journal of Chemistry

Abstract

Soil contamination by metals is a common problem encountered in many industrialized countries. In this work we present a new approach for heavy metals detection by using surface-enhanced Raman scattering (SERS) spectroscopy. Zn(II) can be clearly determined by SERS in contaminated soil by using 4-(2-pyridylazo) resorcinol (PAR) as chelating molecule for the metal ion. The SERS spectra of PAR, of its metal chelates and of the soil extract-PAR mixture were recorded using a hydroxylamine reduced silver colloid. An excellent match of the PAR-contaminated soil extracts SERS spectrum to the Zn(PAR)2 SERS spectrum can be observed, demonstrating the presence of Zn(II) in the soil probes. Density functional theory (DFT) based calculations were also performed for a reliable assignment of SERS spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A.A. Ensafi, M. Fouladgar, Sens. Actuators B 113 (2006) 88

    Article  Google Scholar 

  2. P.C.A. Jeronimo, A.N. Araujo, M. Conceicao, B.S.M. Montenegro, Sens. Actuators B 103 (2004) 169

    Article  Google Scholar 

  3. P.C.A. Jeronimo, A.N. Araujo, M.C.B.S.M. Montenegro, C. Pasquini, I.M. Raimundo Jr, Anal. Bioanal. Chem. 380 (2004) 108

    Article  CAS  Google Scholar 

  4. J. Ghasemi, H. Peyman, M. Meloun, J. Chem. Eng. Data 52 (2007) 1171

    Article  CAS  Google Scholar 

  5. G.C. Schatz, R.P. Van Duyne, In J.M. Chalmers, P.R. Griffiths (Eds.), Electromagnetic Mechanism of Surface-Enhanced Spectroscopy, Handbook of Vibrational Spectroscopy (Wiley, New York, 2002) 759–774

    Google Scholar 

  6. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Chem. Rev. 99 (1999) 2957

    Article  CAS  Google Scholar 

  7. K. Kneipp, H. Kneipp, H.G. Bohr, Top. Appl. Phys. 103 (2006) 261

    Article  CAS  Google Scholar 

  8. N. Leopold, S. Cîntă Pînzaru, M. Baia, E. Antonescu, O. Cozar, W. Kiefer, J. Popp, Vib. Spectrosc. 39 (2005) 16

    Article  Google Scholar 

  9. L.G. Crane, D.X. Wang, L.M. Sears, B. Heyns, K. Carron, Anal. Chem. 67 (1995) 360

    Article  CAS  Google Scholar 

  10. K. Carron, K. Mullen, M. Lanouette, H. Angersbach, Appl. Spectrosc. 45 (1991) 420

    Article  CAS  Google Scholar 

  11. N. Leopold, L. Szabó, A. Pîrnău, M. Aluaş, L.F. Leopold, V. Chiş, O. Cozar, J. Mol. Struct. 919 (2009) 94

    Article  CAS  Google Scholar 

  12. N. Leopold, B. Lendl, J. Phys. Chem. B 107 (2003) 5723

    Article  CAS  Google Scholar 

  13. Gaussian 03, Revision E.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (Gaussian, Inc., Wallingford CT, 2004)

  14. A.D. Becke, J. Chem. Phys. 98 (1993) 5648

    Article  CAS  Google Scholar 

  15. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785

    Article  CAS  Google Scholar 

  16. A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502

    Article  CAS  Google Scholar 

  17. C.F. Leypold, M. Reiher, G. Brehm, M.O. Schmitt, S. Schneider, P. Matousek, M. Towrie, Phys.Chem.Chem.Phys. 5 (2003) 114

    Article  Google Scholar 

  18. V. Chiş, A. Pîrnău, M. Vasilescu, R.A. Varga, O. Oniga, J. Mol. Struct. (Theochem) 831 (2008) 63

    Google Scholar 

  19. V. Chiş, A. Pîrnău, T. Jurcă, M. Vasilescu, S. Simon, O. Cozar, L. David, Chem. Phys. 36 (2005) 153

    Google Scholar 

  20. L. Szabó, V. Chiş, A. Pîrnău, N. Leopold, O. Cozar, Sz. Orosz, Vib. Spectrosc. 48 (2008) 297

    Article  Google Scholar 

  21. L. Szabó, V. Chiş, A. Pîrnău, N. Leopold, O. Cozar, Sz. Orosz, J. Mol. Struct. 924–926 (2009) 361

    Google Scholar 

  22. Z.T. Jiang, J.C. Yu, H.Y. Liu, Anal. Sci. 21 (2005) 851

    Article  CAS  Google Scholar 

  23. F. Karipcin, E. Kabalcilar, Acta Chim. Slov. 54 (2007) 242

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Szabó.

About this article

Cite this article

Szabó, L., Leopold, L.F., Cozar, B.I. et al. SERS approach for Zn(II) detection in contaminated soil. cent.eur.j.chem. 9, 410–414 (2011). https://doi.org/10.2478/s11532-011-0019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-011-0019-5

Keywords

Navigation