Skip to main content
Log in

Noncovalent effects in the coordination and assembling of the[Fe(bpca)2][Er(NO3)3(H2O)4]NO3 system

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

In this work we perform a detailed analysis of the non-covalent effects that build the lattice of the [Fe(bpca)2][Er(NO3)3(H2O)4]NO3 compound, made of cationic d units [Fe(bpca)2]+,(where Hbpca is bis(2-pyridilcarbonyl)amine), neutral f complexes [Er(NO3)3(H2O)4], and the NO3- counter-ion. All these units are interlinked by hydrogen bonds, their assembling benefiting also from electrostatic effects. A particularly interesting sub-ensemble of the crystal is the linear chain formed by the lanthanide units. Going beyond the usual qualitative description of the supramolecular assembling, we performed electron structure calculations on appropriate models related to the experimental structures. The formation energies of d and f coordination bonds are estimated in semi-quantitative manner, being compared with the intermolecular ones, due to hydrogen bonding and dipolar interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Maretti et al., Inorg. Chem. 46, 660 (2007)

    Article  CAS  Google Scholar 

  2. T. Kajiwara et al., Inorg. Chem. 45, 4880 (2006)

    Article  CAS  Google Scholar 

  3. J. Paulovic, F. Cimpoesu, M. Ferbinteanu, K. Hirao, J. Am. Chem. Soc. 126, 3321 (2004)

    Article  CAS  Google Scholar 

  4. M. Ferbinteanu et al., J. Am. Chem. Soc. 128, 9008 (2006)

    Article  CAS  Google Scholar 

  5. M. Ferbinteanu et al., Solid State Sciences 11, 760 (2009)

    Article  CAS  Google Scholar 

  6. M. Ferbinteanu et al., Polyhedron 26, 2069 (2007)

    Article  CAS  Google Scholar 

  7. P. Caravan, J.J. Ellison, T.J. McMurry, R.B. Lauffer, Chem. Rev. 99, 2293 (1999)

    Article  CAS  Google Scholar 

  8. S. Cotton, Lanthanide and actinide chemistry (John Wiley & Sons, New York, 2006)

    Book  Google Scholar 

  9. C. Benelli, D. Gatteschi, Chem. Rev. 102, 2369 (2002) and references therein

    Article  CAS  Google Scholar 

  10. O. Kahn, Acc. Chem. Res. 33, 647 (2000)

    Article  CAS  Google Scholar 

  11. J.P. Sutter, M.L. Kahn, O. Kahn, Adv. Mater. 11, 863 (1999)

    Article  CAS  Google Scholar 

  12. M. Sakamoto, K. Manseki, H. Okawa, Coord. Chem. Rev. 219–221, 379 (2001) and references therein

    Article  Google Scholar 

  13. C.M. Zaleski, E.C. Depperman, J.W. Kampf, M.L. Kirk, V.L. Pecoraro, Angew. Chem. Int. Ed. 43, 3912 (2004)

    Article  CAS  Google Scholar 

  14. A. Mishra, W. Wernsdorfer, K.A. Abboud, G. Christou, J. Am. Chem. Soc. 126, 15648 (2004)

    Article  CAS  Google Scholar 

  15. J.-P. Costes, F. Dahan, W. Wernsdorfer, Inorg. Chem. 45, 5 (2006)

    Article  CAS  Google Scholar 

  16. P. Nockemann, B. Thijs, N. Postelmans, K. Van Hecke, L. Van Meervelt, K. Binnemans, J. Am. Chem. Soc. 128, 13658 (2006)

    Article  CAS  Google Scholar 

  17. S. Tanase, J. Reedijk, Coord. Chem. Rev. 250, 2501 (2006) and references therein

    Article  CAS  Google Scholar 

  18. D.J. Newman, B.K.C. Ng, Crystal Field Handbook (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  19. ADF 2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

  20. G. te Velde et al., J. Comput. Chem. 22, 931 (2001)

    Article  Google Scholar 

  21. C. Fonseca Guerra, J.G. Snijders, G. te Velde, E.J. Baerends, Theor. Chem. Acc. 99, 391 (1998)

    Article  Google Scholar 

  22. A.D. Becke, Phy. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  23. J.P. Perdew, Phys. Rev. B 33, 8822 (1986)

    Article  Google Scholar 

  24. J.P. Perdew, Phys. Rev. B 34, 7406 (1986)

    Article  Google Scholar 

  25. C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria, Theory and Applications of Computational Chemistry (Elsevier B.V., Amsterdam, 2005) 291

    Google Scholar 

  26. F.A. Cotton F.G. Wilkinson, Advanced Inorganic Chemistry, 6th edition (John Wiley, New York, 1999) 1108

    Google Scholar 

  27. O.V. Gritsenko, P.R.T. Schipper, E.J. Baerends, Phys. Rev. A 57, 3450 (1998)

    Article  CAS  Google Scholar 

  28. the RemoveFragOrbitals keyword, online documentation in http://www.scm.com/Doc, Doc2009.01/ADF/ADFUsersGuide/page88.html

  29. F.L. Hirshfeld, Theoretica Chimica Acta 44, 129 (1977)

    Article  CAS  Google Scholar 

  30. C. Fonseca Guerra, J.-W. Handgraaf, E.J. Baerends, F.M. Bickelhaupt, J. Comput. Chem. 25, 189 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilena Ferbinteanu.

About this article

Cite this article

Ferbinteanu, M., Zaharia, A., Gîrţu, M.A. et al. Noncovalent effects in the coordination and assembling of the[Fe(bpca)2][Er(NO3)3(H2O)4]NO3 system. cent.eur.j.chem. 8, 519–529 (2010). https://doi.org/10.2478/s11532-010-0019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-010-0019-x

Keywords

Navigation