Skip to main content
Log in

Theoretical studies on the electronic structures and spectra of single silicon-doped SWCNTs

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

The equilibrium geometries and electronic structures of a series of SWCNTs doped with a silicon atom were studied by using density function theory (DFT). The most stable doping site of silicon predicted at B3LYP/6-31G(d,p) level was located near the boundary of the SWCNTs. The energy gaps of (3,3) C48, (3,3) C60 and (3,3) C72 were respectively decreased by 0.43, 0.25 and 0.14 eV after doping. Based on the B3LYP/6-31G(d) optimized geometries, the electronic spectra of the doped SWCNTs were computed using the INDO/CIS method. The first UV absorption at 973.9 nm of (5,5)-Si(L) (C59Si) compared with that at 937.5 nm of (5,5) (C60) was red-shifted. The 13C NMR spectra and nuclear independent chemical shifts (NICS) of the doped SWCNTs were investigated at B3LYP/6-31G(d) level. The chemical shift at 119.4 of the carbon atom bonded with the silicon atom in (3,3)-Si(L) (C59Si) in comparison with that at 144.1 of the same carbon atom in (3,3) (C60) moved upfield. The tendency of the aromaticity (NICS = −0.1) for (3,3)-Si(H) (C47Si) with respect to that of the anti-aromaticity (NICS = 6.0) for (3,3) (C48) was predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.Y. Sdobnyakov, V.M. Samsonov, Cent. Eur. J. Chem. 3, 247 (2005)

    CAS  Google Scholar 

  2. G.E. Chernev, B.I. Samuneva, P.R. Djambaski, I.M.M. Salvado, H.V. Fernandes, Cent. Eur. J. Chem. 4, 81 (2006)

    Article  CAS  Google Scholar 

  3. K. Walczak, G. Platero, Cent. Eur. J. Chem. 4, 30 (2006)

    CAS  Google Scholar 

  4. P.V. Adhyapak, P.R. Karandikar, J.W. Dadge, R.C. Aiyer, A.J. Chandwadkar, Cent. Eur. J. Chem. 4, 317 (2006)

    Article  CAS  Google Scholar 

  5. S. Iijima, Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  6. D.T. Colbert et al., Science 266, 1218 (1994)

    Article  CAS  Google Scholar 

  7. W. Zhou et al., J. Phys. Chem. B 109, 6963 (2005)

    Article  CAS  Google Scholar 

  8. J. Wang, R. Cui, Y. Liu, W. Zhou, Z. Jin, Y. Li, J. Phys. Chem. C 113, 5075 (2009)

    Article  CAS  Google Scholar 

  9. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, J. Phys. Chem. B 104, 2794 (2000)

    Article  CAS  Google Scholar 

  10. H. Noriaki, S. Shin-Ichi, O. Atsushi, Phys. Rev. Lett. 68, 1579 (1992)

    Article  Google Scholar 

  11. J.A. Fagan et al., J. Am. Chem. Soc. 129, 10607 (2007)

    Article  CAS  Google Scholar 

  12. J. Nanda et al., J. Phys. Chem. C 112, 654 (2008)

    Article  CAS  Google Scholar 

  13. W. An, C.H. Turner, J. Phys. Chem. C 113, 7069 (2009)

    Article  CAS  Google Scholar 

  14. K. Esfarjani, A.A. Farajian, Y. Hashi, Y. Kawazoe, Appl. Phys. Lett. 74, 79 (1999)

    Article  CAS  Google Scholar 

  15. H.Y. Song, H.M. Sun, G.X. Zhang, Commun. Theor. Phys. 45, 741 (2006)

    Article  CAS  Google Scholar 

  16. M. Rahmandoust, A. Öchsner, J. Nano Res. 6, 185 (2009)

    Article  CAS  Google Scholar 

  17. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985)

    Article  CAS  Google Scholar 

  18. A.D. Becke, J. Phys. Chem. 97, 5648 (1993)

    Google Scholar 

  19. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  20. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)

    Article  CAS  Google Scholar 

  21. M.J. Frisch et al., Gaussian 03, Revision B 01 (Gaussian Inc., Pittsburgh PA, 2003)

    Google Scholar 

  22. Z. Wang, S. Wu, Chem. Pap. 61, 313 (2007)

    Article  CAS  Google Scholar 

  23. S. Chen, Q. Teng, S. Wu, Cent. Eur. J. Chem. 4, 223 (2006)

    Article  CAS  Google Scholar 

  24. X. Ren, Y. Miao, N. Li, S. Wu, Indian J. Chem. Sec. A 48, 623 (2009)

    Google Scholar 

  25. C. Yan, N. Su, S. Wu, Russ. J. Phys. Chem. A 81, 1980 (2007)

    Article  CAS  Google Scholar 

  26. L. Xu, L. Zhu, S. Wu, X. Chen, Q. Teng, Cent. Eur. J. Chem. 4, 732 (2006)

    Article  CAS  Google Scholar 

  27. Z. Zhu, S. Wu, Y. Zhang, Russ. J. Phys. Chem. A 82, 2293 (2008)

    CAS  Google Scholar 

  28. S. Wu, Q. Teng, Int. J. Quantum Chem. 106, 526 (2006)

    Article  CAS  Google Scholar 

  29. Q. Teng, S. Wu, Int. J. Quantum Chem. 104, 279 (2005)

    Article  CAS  Google Scholar 

  30. W. Zhang, S. Wu, X. Wen, Indian J. Chem. Sec. A 46, 1911 (2007)

    Google Scholar 

  31. H. Sun, X. Yun, S. Wu, Q. Teng, J. Mol. Struct. (Theochem) 868, 71 (2008)

    Article  CAS  Google Scholar 

  32. H. Sun, S. Wu, X. Ren, J. Mol. Struct. (Theochem) 855, 6 (2008)

    Article  CAS  Google Scholar 

  33. Y. Ding, P. Gao, L. Qin, Q. Teng, Int. J. Quantum Chem. 109, 693 (2009)

    Article  CAS  Google Scholar 

  34. N. Su, Q. Guo, S. Wu, Indian J. Chem. Sec. A 47, 1473 (2008)

    Google Scholar 

  35. A. Virdi, V.P. Gupta, A. Sharma, Cent. Eur. J. Chem. 2, 456 (2004)

    Article  CAS  Google Scholar 

  36. K. Bahgat, Cent. Eur. J. Chem. 4, 773 (2006)

    Article  CAS  Google Scholar 

  37. S. Odabaşıoğlu, R. Kurtaran, A. Azizoglu, H. Kara, S. Öz, O. Atakol, Cent. Eur. J. Chem. 7, 420 (2009)

    Google Scholar 

  38. T. Kolev, B.B. Koleva, M. Spiteller, Cent. Eur. J. Chem. 6, 393 (2008)

    Article  CAS  Google Scholar 

  39. P. Yin, R. Qu, H. Chen, Y. Tian, G. Yin, C. Bao, Cent. Eur. J. Chem. 6, 438 (2008)

    Article  CAS  Google Scholar 

  40. Q.S. Hu, L.C. Li, X. Wang, Cent. Eur. J. Chem. 6, 304 (2008)

    Article  CAS  Google Scholar 

  41. J.D. Head, M.C. Zerner, Chem. Phys. Lett. 131, 359 (1986)

    Article  CAS  Google Scholar 

  42. V.P. Ananikov, Cent. Eur. J. Chem. 2, 196 (2004)

    Article  CAS  Google Scholar 

  43. G. Zuchowski, K. Zborowski, Cent. Eur. J. Chem. 4, 523 (2006)

    Article  CAS  Google Scholar 

  44. N.W.S.V.N. De Silva, E.C. Lisic, T.V. Albu, Cent. Eur. J. Chem. 4, 646 (2006)

    Article  CAS  Google Scholar 

  45. P.v.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N.J.R.v.E. Hommes, J. Am. Chem. Soc. 118, 6317 (1996)

    Article  CAS  Google Scholar 

  46. P.v.R. Schleyer, H. Jiao, N.J.R.v.E. Hommes, V.G. Malkin, O.L. Malkina, J. Am. Chem. Soc. 119, 12669 (1997)

    Article  CAS  Google Scholar 

  47. P.v.R. Schleyer et al., Org. Lett. 3, 2465 (2001)

    Article  CAS  Google Scholar 

  48. Z. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, P.v.R. Schleyer, Chem. Rev. 105, 3842 (2005)

    Article  CAS  Google Scholar 

  49. F.B. Shaidaei, C.S. Wannere, C. Corminboeuf, R. Puchta, P.v.R. Schleyer, Org. Lett. 8, 863 (2006)

    Article  CAS  Google Scholar 

  50. A. Kongkanand, P.V. Kamat, ACS Nano. 1, 13 (2007)

    Article  CAS  Google Scholar 

  51. X. Lu, Z. Chen, Chem. Rev. 105, 3643 (2005)

    Article  CAS  Google Scholar 

  52. C.F.R.A.C. Lima, L.R. Gomes, L.M.N.B.F. Santos, J. Phys. Chem. 111, 10598 (2007)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiwen Teng.

About this article

Cite this article

Gao, P., Yu, Y., Ni, Z. et al. Theoretical studies on the electronic structures and spectra of single silicon-doped SWCNTs. cent.eur.j.chem. 8, 587–593 (2010). https://doi.org/10.2478/s11532-010-0018-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-010-0018-y

Keywords

Navigation