Skip to main content
Log in

Adsorption of mercury species on river sediments — effects of selected abiotic parameters

  • Reserch Article
  • Published:
Central European Journal of Chemistry

Abstract

Abiotic parameters (pH, temperature, current velocity, mercury species concentration, and sediment and aqueous media composition) influence mercury species (MeHg+, EtHg+, PhHg+ and inorganic Hg2+) adsorption on river sediments. The highest amount of adsorbed MeHg+ and EtHg+ (82–93% and 85–91% for static and agitated system, respectively) occurred at pH 3–4. For PhHg+ the maximum adsorption (90% and 95% for static and agitated systems) was located over the broad 3–10 pH range, while for Hg2+ (94% and 97% for static and agitated systems) it was at pH ∼ 3. Temperature (4.5–60°C) influenced the adsorption rate but not the quantity. Both rate and quantity increased in the order: static < agitated ≤ stirred systems. The aqueous medium composition affected both rate and quantity. Sulfate caused the largest adsorption decrease for organomercury species (15–25% decrease); sulfide reduced Hg2+ adsorption about 67%. Cations at pH 5.2 reduced either the adsorption rate (Ca2+, Al3+) or the total adsorption (Zn2+, Fe3+). Positive correlations were found between sediment C, N, S content as well as cation exchange capacity (CEC) with mercury adsorption (R = 0.45–0.66, 0.56–0.89, 0.45–0.61 and 0.55–0.73, respectively) while negative correlations were observed with Fe and Al (R = −0.63 to −0.90 and −0.65 to −0.86, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toxicological Profile for Mercury — U. S. Department of Health and Human Services. Public Health Service Agency for Toxic Substances and Disease Registry, 1999

  2. D.W. Boening, Chemosphere 40, 1335 (2000)

    Article  CAS  Google Scholar 

  3. R.E. Farrell, P.M. Huang, J.J. Germida, Appl. Organometal. Chem. 12, 613 (1998)

    Article  CAS  Google Scholar 

  4. H. Hintelmann, R. Harris, Marine Chem. 90, 165 (2004)

    Article  CAS  Google Scholar 

  5. Y. Yin, H.E. Allen, C.P. Huang, D.L. Sparks, P.F. Sanders, Environ. Sci. Technol. 31, 496 (1997)

    Article  CAS  Google Scholar 

  6. E. Semu, B.R. Singh, A.R. Selmer-Olsen, Water, Air, Soil Pollut. 27, 19 (1986)

    Article  CAS  Google Scholar 

  7. E. Semu, B.R. Singh, A.R. Selmer-Olsen, Water, Air, Soil Pollut. 32, 1 (1987)

    CAS  Google Scholar 

  8. E. Semu, B.R. Singh, A.R. Selmer-Olsen, Water, Air, Soil Pollut. 32, 11 (1987)

    CAS  Google Scholar 

  9. M.C. Amacher, H.M. Selim, I.K. Iskandar, J. Environ. Qual. 19, 382 (1990)

    CAS  Google Scholar 

  10. L. Boszke, A. Kowalski, G. Głosińska, R. Szarek, J. Siepak, Polish J. Environm. Studies 12, 5 (2003)

    CAS  Google Scholar 

  11. M. Ravichandran, Chemosphere 55, 319 (2004)

    Article  CAS  Google Scholar 

  12. S.M. Le Roux, A. Turner, G.E. Millward, L. Ebdon, P. Appriou, J. Environ. Monit. 3, 37 (2001)

    Article  Google Scholar 

  13. A. De Diego, C.M. Tseng, N. Dimov, D. Amouroux, O.F.X. Donard, Appl. Organometal. Chem. 15, 490 (2001)

    Article  Google Scholar 

  14. J. Zbíral, Soil Analysis I (Central Institute for Supervising and Testing in Agriculture, Brno, 2002) (In Czech)

    Google Scholar 

  15. P. Houserová, D. Matéjíček, V. Kubáň, J. Pavlíčková, J. Komárek, J. Sep. Sci. 29, 248 (2006)

    Article  CAS  Google Scholar 

  16. M. Schuhmacher, J.L. Domingo, J.M. Liobrt, A.J. Corbella, Sci. Tot. Environm. (Suppl.) 117 (1993)

  17. Y. Yin, H.E. Allen, Y. Li, C.P. Huang, P.F. Sanders, J. Environ. Qual. 25, 837 (1996)

    Article  CAS  Google Scholar 

  18. N.J. Barrow, C.V. Cox, J. Soil Sci. 43, 295 (1992)

    Article  CAS  Google Scholar 

  19. N.J. Barrow, C.V. Cox, J. Soil Sci. 43, 305 (1992)

    Article  CAS  Google Scholar 

  20. Y. Yin, H.E. Allen, C.-P. Huang, P.F. Sanders, Environm. Toxicol. Chem. 16, 2457 (1997)

    Article  CAS  Google Scholar 

  21. S. Jahanbakht, F. Livardjani, A. Jaeger, Chemosphere 49, 1399 (2002)

    Article  CAS  Google Scholar 

  22. O. Regnell, T. Hammart, A. Helgee, B. Troedsson, Can. J. Fish. Aquat. Sci. 58, 506 (2001)

    Article  CAS  Google Scholar 

  23. F.M.G. Tack, T. Vanhaesebroeck, M.G. Verloo, K. Van Rompaey, E. Van Ranst, Environm. Pollut. 134, 173 (2005)

    Article  CAS  Google Scholar 

  24. J. Kotnik, M. Horvat, V. Jereb, Environm. Pollut. 17, 593 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlastimil Kubáň.

About this article

Cite this article

Pelcová, P., Margetínová, J., Vaculovič, T. et al. Adsorption of mercury species on river sediments — effects of selected abiotic parameters. cent.eur.j.chem. 8, 116–125 (2010). https://doi.org/10.2478/s11532-009-0128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-009-0128-6

Keywords

Navigation