Skip to main content
Log in

Formation of amyloid-like aggregates through the attachment of protein molecules to a Congo red scaffolding framework ordered under the influence of an electric field

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

This study describes a technique which makes it possible to introduce the amyloid-like order to protein aggregates by using the scaffolding framework built from supramolecular, fibrillar Congo red structures arranged in an electric field. The electric field was used not only to obtain a uniform orientation of the charged dye fibrils, but also to make the fibrils long, compact and rigid due to the delocalization of pi electrons, which favors ring stacking and, as a consequence, results in an increased tendency to self-assemble. The protein molecules (immunoglobulin L chain lambda, ferritin) attached to this easily adsorbing dye framework assume its ordered structure. The complex precipitating as plate-like fragments shows birefringence in polarized light. The parallel organization of fibrils can be observed with an electron microscope. The dye framework may be removed via reduction with sodium dithionite, leaving the aggregated protein molecules in the ordered state, as confirmed by X-ray diffraction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kisilevsky, J. Struct. Biol. 130, 99 (2000)

    Article  CAS  Google Scholar 

  2. A.L. Fink, Fold. Des. 3, R9 (1998)

    Article  CAS  Google Scholar 

  3. L. Nielsen, R. Khurana, A. Coats, S. Frokjaer, J. Brange, S. Vyas, V.N. Uversky, A.L. Fink, Biochemistry 40, 6036 (2001)

    Article  CAS  Google Scholar 

  4. R. Wetzel, Structure 10, 1031 (2002)

    Article  CAS  Google Scholar 

  5. A. Quintas, D.C. Vaz, I. Cardoso, M.J.M. Saraiva, R.M.M. Brito, J. Biol. Chem. 276, 27207 (2001)

    Article  CAS  Google Scholar 

  6. A. Lorenzo, B.A. Yankner, Proc. Natl. Acad. Sci. U.S.A. 91, 12243 (1994)

    Article  CAS  Google Scholar 

  7. C. Wu, Z. Wang, H. Lei, W. Zhang, Y. Duan, J. Am. Chem. Soc. 129, 1225 (2007)

    Article  CAS  Google Scholar 

  8. R. Tycko, Curr. Opin. Struct. Biol. 14, 96 (2004)

    Article  CAS  Google Scholar 

  9. M.R. Nilsson, Methods 34, 151 (2004)

    Article  CAS  Google Scholar 

  10. P.K. Nandi, E. Leclerc, J-C. Nicole, M. Takahashi, J. Mol. Biol. 322, 153 (2002)

    Article  CAS  Google Scholar 

  11. B. Ma, R. Nussinov, Curr. Opin. Chem. Biol. 10, 445 (2006)

    Article  CAS  Google Scholar 

  12. F. Chiti, P. Webster, N. Taddei, A. Clark, M. Stefani, G. Ramponi, C.M. Dobson, Proc. Natl. Acad. Sci. U.S.A. 96, 3590 (1999)

    Article  CAS  Google Scholar 

  13. E. Gazit, Drugs Fut. 29, 1 (2004)

    Article  Google Scholar 

  14. P. Spólnik et al., Chem. Biol. Drug. Des. 70, 491 (2007)

    Article  Google Scholar 

  15. M.J. Rashkin, M.L Waters, J. Am. Chem. Soc. 124, 1860 (2002)

    Article  CAS  Google Scholar 

  16. P. Mignon, S. Loverix, J. Steyaert, P. Geerlings, Nucleic Acids Res. 33, 1779 (2005)

    Article  CAS  Google Scholar 

  17. C.A. Hunter, K.R. Lawson, J. Perkins, C.J. Urch, J. Chem. Soc. Perkin Trans. 2, 651 (2001)

    Google Scholar 

  18. M.O. Sinnokrot, C.D. Sherrill, J. Am. Chem. Soc. 126, 7690 (2004)

    Article  CAS  Google Scholar 

  19. M.O. Sinnokrot, C.D. Sherrill, J. Phys. Chem. A. 107, 8377 (2003)

    Article  CAS  Google Scholar 

  20. P. Mignon, S. Loverix, P. Geerlings, Chem. Phys. Lett. 401, 40 (2005)

    Article  CAS  Google Scholar 

  21. L. Venkataraman, J.E. Klare, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Nature 442, 904 (2006)

    Article  CAS  Google Scholar 

  22. T. Dadosh et al., Nature 436, 677 (2005)

    Article  CAS  Google Scholar 

  23. A. Troisi, M.A. Ratner, J. Am. Chem. Soc. 124, 14528 (2002)

    Article  CAS  Google Scholar 

  24. S. Yasuda, T. Nakamura, M. Matsumoto, H. Shigekawa, J. Am. Chem. Soc. 125, 16430 (2003)

    Article  CAS  Google Scholar 

  25. Y. Lansac, M.A. Glaser, N.A. Clark, O.D. Lavrentovich, Nature 398, 54 (1999)

    Article  CAS  Google Scholar 

  26. I. McCulloch et al., Jpn. J. Appl. Phys. 47, 488 (2008)

    Article  CAS  Google Scholar 

  27. K.S. Krishnamurthy, P. Kumar, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., DOI: 10.1103/PhysRevE.76.051705

  28. I. Roterman, J. Rybarska, L. Konieczny, M. Skowronek, B. Stopa, B. Piekarska, Comput. Chem. 22, 61 (1998)

    Article  CAS  Google Scholar 

  29. B. Piekarska et al., Biopolymers 59, 446 (2001)

    Article  CAS  Google Scholar 

  30. M. Król, I. Roterman, B. Piekarska, L. Konieczny, J. Rybarska, B. Stopa, Biopolymers 69, 189 (2003)

    Article  Google Scholar 

  31. H.M. Berman, T.N. Bhat, P.E. Bourne, Z. Feng, G. Gilliland, H. Weissig, J. Westbrook, Nat. Struct. Biol. 7 Suppl. S, 957 (2000)

    Article  CAS  Google Scholar 

  32. M. Mezei, J. Comput. Chem. 18, 812 (1997)

    Article  CAS  Google Scholar 

  33. J.C. Phillips et al., J. Comput. Chem. 26, 1781 (2005)

    Article  CAS  Google Scholar 

  34. A.D. MacKerell Jr. et al., J. Phys. Chem. B 102, 3586 (1998)

    Article  CAS  Google Scholar 

  35. M. Król, T. Borowski, I. Roterman, B. Piekarska, B. Stopa, J. Rybarska, L. Konieczny, J. Comput. Aided Mol. Des. 18, 41 (2004)

    Article  Google Scholar 

  36. B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, M. Karplus, J. Comput. Chem. 4, 187 (1983)

    Article  CAS  Google Scholar 

  37. M. Skowronek et al., Biopolymers 46, 267 (1998)

    Article  CAS  Google Scholar 

  38. X. Jiang, C.S. Smith, H.M. Petrassi, P. Hammarström, J.T. White, J.C. Sacchettini, J.W. Kelly, Biochemistry 40, 11442 (2001)

    Article  CAS  Google Scholar 

  39. J. Wall, M. Schell, C. Murphy, R. Hrncic, F.J. Stevens, A. Solomon, Biochemistry 38, 14101 (1999)

    Article  CAS  Google Scholar 

  40. B. Piekarska, J. Rybarska, B. Stopa, G. Zemanek, M. Król, I. Roterman, L. Konieczny, Acta Biochim. Pol. 46, 841 (1999)

    CAS  Google Scholar 

  41. B. Stopa et al., Int. J. Biol. Macromol. 40, 1 (2006)

    Article  CAS  Google Scholar 

  42. M. Saiki, S. Honda, K. Kawasaki, D. Zhou, A. Kaito, T. Konakahara, H. Morii, J. Mol. Biol. 348, 983 (2005)

    Article  CAS  Google Scholar 

  43. E.D. Eanes, G.G. Glenner, J. Histochem. Cytochem. 16, 673 (1968)

    CAS  Google Scholar 

  44. L.C. Serpell, P.E. Fraser, M. Sunde, In: R. Wetzel (Ed.), Methods in Enzymology (Academic Press, San Diego, 1999) Vol. 309, 526

    Google Scholar 

  45. P.T. Lansbury Jr., Biochemistry 31, 6865 (1992)

    Article  CAS  Google Scholar 

  46. S.C. Meredith, Ann. N.Y. Acad. Sci. 1066, 181 (2005)

    Article  CAS  Google Scholar 

  47. J.L. Jiménez, J.I. Guijarro, E. Orlova, J. Zurdo, C.M. Dobson, M. Sunde, H.R. Saibil, EMBO J. 18, 815 (1999)

    Article  Google Scholar 

  48. J.L Jiménez, J. Nettleton, M. Bouchard, C.V. Robinson, C.M. Dobson, H.R. Saibil, Proc. Natl. Acad. Sci. U.S.A. 99, 9196 (2002)

    Article  Google Scholar 

  49. N. Rubin, E. Perugia, M. Goldschmidt, M. Fridkin, L. Addadi, J. Am. Chem. Soc. 130, 4602 (2008)

    Article  CAS  Google Scholar 

  50. A.E. Bevivino, P.J. Loll, Proc. Nat. Acad. Sci. U.S.A. 98, 11955 (2001)

    Article  CAS  Google Scholar 

  51. L. Li, T.A. Darden, L. Bartolotti, D. Kominos, L.G. Pedersen, Biophys. J. 76, 2871 (1999)

    Article  CAS  Google Scholar 

  52. R. Azriel, E. Gazit, J. Biol. Chem. 276, 34156 (2001)

    Article  CAS  Google Scholar 

  53. Y. Porat, A. Stepensky, F-X. Ding, F. Naider, E. Gazit, Biopolymers 69, 161 (2003)

    Article  CAS  Google Scholar 

  54. R. Nelson, M.R. Sawaya, M. Balbirnie, A.O. Madsen, C. Riekel, R. Grothe, D. Eisenberg, Nature 435, 773 (2005)

    Article  CAS  Google Scholar 

  55. F.A. Aldaye, A.L. Palmer, H.F. Sleiman, Science 321, 1795 (2008)

    Article  CAS  Google Scholar 

  56. F. Pullara, A. Emanuele, Proteins Struct. Funct. Bioinf. 73, 1037 (2008)

    Article  CAS  Google Scholar 

  57. C. Arnold, Chem. Eng. News 86, 48 (2008)

    Google Scholar 

  58. S. Sato, M. Kushima, Mol. Cryst. Liq. Cryst. 141, 229 (1986)

    Article  CAS  Google Scholar 

  59. V.M. Pergamenshchik, V.Y. Gayvoronsky, S.V. Yakunin, R.M. Vasyuta, V.G. Nazarenko, O.D. Lavrentovich, Mol. Cryst. Liq. Cryst. 454, 145 (2006)

    Article  Google Scholar 

  60. V. Kozmík, A. Kovářová, M. Kuchař, J. Svoboda, V. Novotná, M. Glogarová, J. Kroupa, Liq. Crys. 33, 41 (2006)

    Article  Google Scholar 

  61. V. Manjuladevi, J.K. Vij, Liq. Cryst. 34, 963 (2007)

    Article  CAS  Google Scholar 

  62. E. Iizuka, Adv. Biophys. 24, 1 (1988)

    Article  CAS  Google Scholar 

  63. P. Jonkheijm van der Schoot, A.P. Schenning, E.W. Meijer, Science 313, 80 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Stopa.

About this article

Cite this article

Stopa, B., Piekarska, B., Konieczny, L. et al. Formation of amyloid-like aggregates through the attachment of protein molecules to a Congo red scaffolding framework ordered under the influence of an electric field. cent.eur.j.chem. 8, 41–50 (2010). https://doi.org/10.2478/s11532-009-0107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-009-0107-y

Keywords

Navigation