Skip to main content
Log in

Combination of cloud point extraction and flame atomic absorption spectrometry for preconcentration and determination of trace iron in environmental and biological samples

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

In the presented work, the conditions for cloud point extraction of iron from aqueous solutions using 7-iodo-8-hydroxyquinolin-5-sulphonic acid (Ferron) was investigated and optimized. The procedure is based on the separation of its ferron complex into the micellar media by adding the surfactant Triton X-114. After phase separation, the surfactant-rich phase was dissolved with 1.0 M HNO3 in methanol. Iron was determined by flame atomic absorption spectrometry. Optimization of the pH, ligand and surfactant quantities, incubation time, temperature, viscosity, sample volume, and interfering ions were investigated. The effects of the matrix ions were also examined. The detection limits for three times the standard deviations of the blank for iron was 0.4 ng m L-1, enrichment factor of 19.6 and preconcentration factor of 30 could be achieved. The validity of cloud point extraction was checked by employing real samples including soil, blood, spinach, milk, meat, liver and orange juice samples using the standard addition method, which gave satisfactory results.In the presented work, the conditions for cloud point extraction of iron from aqueous solutions using 7-iodo-8-hydroxyquinolin-5-sulphonic acid (Ferron) was investigated and optimized. The procedure is based on the separation of its ferron complex into the micellar media by adding the surfactant Triton X-114. After phase separation, the surfactant-rich phase was dissolved with 1.0 M HNO3 in methanol. Iron was determined by flame atomic absorption spectrometry. Optimization of the pH, ligand and surfactant quantities, incubation time, temperature, viscosity, sample volume, and interfering ions were investigated. The effects of the matrix ions were also examined. The detection limits for three times the standard deviations of the blank for iron was 0.4 ng m L−1, enrichment factor of 19.6 and preconcentration factor of 30 could be achieved. The validity of cloud point extraction was checked by employing real samples including soil, blood, spinach, milk, meat, liver and orange juice samples using the standard addition method, which gave satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Cotton, A.G. Wilkinson, Advanced inorganic chemistry, 3rd edition (Wiley, New York, 1998) 868–870

    Google Scholar 

  2. J.H. Martin, S.E. Fitzwater, Nature, 331, 341 (1988)

    Article  CAS  Google Scholar 

  3. J.H. Martin, H. Gordon, R.M. Fitzwater, S.E. Broenkow, Vertex, Part A, 36, 649 (1989)

    CAS  Google Scholar 

  4. R.J.M. Hudson, F.M.M. Morel, Abstracts of Papers, 198th National Meeting of the American Chemical Society, (Miami Beach, FL, 1989) 10–15

    Google Scholar 

  5. M.H. Conklin, M.R. Hoffmann, Environ. Sci. Technol., 22, 899 (1988)

    Article  CAS  PubMed  Google Scholar 

  6. V.A. Elrod, K.S. Johnson, K.H. Coale, Anal. Chem., 63, 893 (1991)

    Article  CAS  Google Scholar 

  7. M.J. Rosen, Surfactants and interfacial phenomena (Wiley, New York, 1987) 152

    Google Scholar 

  8. M. Ghaedi, A. Shokrollahi, K. Niknam, M. Soylak, Sep. Sci. Tech., In press

  9. C.G. Pinto, J.L.P. Pavon, B.M. Cordero, Anal. Chem., 66, 874 (1994)

    Article  Google Scholar 

  10. D. Blankschtein, G. Thurston, G.B. Benedek, J Chem. Phys., 85, 7268 (1986)

    Article  CAS  Google Scholar 

  11. M. Corti, C. Minerov, V.J. Degiorgio, Phys. Chem., 88, 309 (1984)

    Article  CAS  Google Scholar 

  12. H. Tani, T. Kamidate, H.J. Watanabe, Chromatogr. A, 780, 229 (1997)

    Article  CAS  Google Scholar 

  13. A. Sanz-Medel, M.D.F. Campa, E.B. Gonzalez, M.L. Fernandez-Sanchez, Spectrochim. Acta B, 54, 251 (1999)

    Article  Google Scholar 

  14. E.K. Paleologos, D.L. Giokas, S.M. Tzouwara-Karayanni, M.I. Karayannis, Anal. Chim. Acta, 458, 241 (2002)

    Article  CAS  Google Scholar 

  15. A. Ohashi, H. Ito, C. Kanai, H. Imura, K. Ohashi, Talanta, 65, 525 (2005)

    Article  CAS  Google Scholar 

  16. K.A. Tony, S. Kartikeyan, B. Vijayalakshmy, T.P. Rao, C.S.P. Iyer, Analyst, 124, 191 (1999)

    Article  CAS  Google Scholar 

  17. X.P. Yan, M. Sperling, B. Welz, Anal. Chem., 71, 4353 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. D.L. Giokas, E.K. Paleologos, S.M. Tzouwara-Karayanni, M.I. Karayannis J. Anal. At. Spectrom., 16, 521 (2001)

    Article  CAS  Google Scholar 

  19. Q.F. Fang, M. Du, C.W. Huie, Anal. Chem., 73, 3502 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. D.L. Giokas, E.K. Paleologos, P.G. Veltsistas, M.I. Karayannis, Talanta, 56, 415 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Surme, I. Narin, M. Soylak, H. Yuruk, M. Dogan, Microchimica Acta, 157, 193 (2007)

    Article  CAS  Google Scholar 

  22. P. Liang, H.B. Sang, Z.M. Sun, J. Colloid Interface Sci., 304, 486 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. N. De Jong, M. Draye, A. Favre-Reguillon, G. LeBuzit, G. Cote, J. Foos, J. Colloid Interface Sci., 291, 303 (2005)

    Article  PubMed  Google Scholar 

  24. A.R. Zarei, Anal. Biochem., 369, 161 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. A. Afkhami, M. Bahram, S. Gholami, Z. Zand, Anal. Biochem., 336, 295 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. C.D. Stalikas, Trends Anal. Chem., 21, 343 (2002)

    Article  CAS  Google Scholar 

  27. F.H. Quina, W.L. Hinze, Ind. Eng. Chem. Res., 38, 4150 (1999)

    Article  CAS  Google Scholar 

  28. A.E. Martell, R.J. Motekaitis, Determination and use of stability constants, VCH Publishers, New York (1992)

    Google Scholar 

  29. G. Schwarzenbach, H. Flaschka, Complexometric titrations, Methuen, London, (1969)

    Google Scholar 

  30. M. Ghaedi, A. Shokrollahi, A.H. Kianfar, A.S. Mirsadeghi, A. Pourfarokhi, M. Soylak, J. Hazar. Mat. In Press (2007)

  31. M. Ghaedi, F. Ahmadi, M. Soylak, J. Haz. Mat., 147, 226 (2007)

    Article  CAS  Google Scholar 

  32. M. Ghaedi, A. Shokrollahi, M.R. Fathi, S. Gharaghani, M. Soylak, Quim Nova, 31, 70 (2008)

    Article  Google Scholar 

  33. S.P. Fili, E. Oliveira, P.V. Oliveira, J. Braz. Chem. Soc., 14, 435 (2003)

    Article  CAS  Google Scholar 

  34. M. Ghaedi, A. Shokrollahi, F. Ahmadi, H.R. Rajabi, M. Soylak, J. Hazar. Mat., 150, 535 (2008)

    Article  Google Scholar 

  35. H. Karimi, M. Ghaedi, A. Shokrollahi, H. Rajabi, M. Soylak, J. Hazar. Mat., 151, 26 (2008)

    Article  CAS  Google Scholar 

  36. A. Shokrollahi, M. Ghaedi, M.S. Niband and H.R. Rajabi, J. Hazar. Mat., 151, 642 (2008)

    Article  CAS  Google Scholar 

  37. J.F. Rusling, C.N. Shi, T.F. Kumosink, Anal. Chem., 60, 1260 (1988)

    Article  CAS  PubMed  Google Scholar 

  38. M.A.M. da Silva, V.L.A. Frescura, A.J. Curtius, Spectrochim. Acta, Part B, Atom. Spectrosc., 55, 803 (2000)

    Article  Google Scholar 

  39. J.R. Chen, K.C. Teo, Anal. Chim. Acta, 450, 215 (2001)

    Article  CAS  Google Scholar 

  40. C.G. Pinto, J.L.P. Pavon, B.M. Cordero, E.R. Beato, S.G. Sanchez, J. Anal. At. Spectrom., 11, 37 (1996)

    Article  Google Scholar 

  41. G.u TR, P.A. Galera-Gomez, Physicochem. A. Eng. Asp., 104, 365 (1999)

    Google Scholar 

  42. C.C. Nascentes, M.A.Z. Arruda, Talanta, 61, 759 (2003)

    Article  CAS  PubMed  Google Scholar 

  43. G. Komaromy-Hiller, N. Calkins, R. Wandruszka, Langmuir, 12, 916 (1996)

    Article  CAS  Google Scholar 

  44. J.K. Armstrong, B.Z. Chowdhry, M.J. Snowden, S.A. Leharne, Langmuir, 14, 2004 (1998)

    Article  CAS  Google Scholar 

  45. R.P. Frankewich, W.L. Hinze, Anal Chem., 66, 944 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardeshir Shokrollahi.

About this article

Cite this article

Ghaedi, M., Shokrollahi, A., Mehrnoosh, R. et al. Combination of cloud point extraction and flame atomic absorption spectrometry for preconcentration and determination of trace iron in environmental and biological samples. cent.eur.j.chem. 6, 488–496 (2008). https://doi.org/10.2478/s11532-008-0049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-008-0049-9

Keywords

Navigation