Central European Journal of Chemistry

, Volume 6, Issue 2, pp 277–283 | Cite as

Applicability of nanofiltration and reverse osmosis for the treatment of wastewater of different origin

  • Edit Cséfalvay
  • Péter M. Imre
  • Péter Mizsey
Research Article


Membrane separations are finding greater use in wastewater treatment because of their efficiency. In order to prove the effectiveness of membrane filtration an applicability study is carried out. Nanofiltration and reverse osmosis membranes are tested under quite different conditions to reduce the chemical oxygen demands (COD) of wastewaters to meet the Council Directive 76/464/EEC release limit. Two kinds of real wastewaters were selected for the investigation. The wastewaters represent extreme different circumstances since the difference between their COD is two orders of magnitude. All of the membranes tested can be applied either to the treatment of wastewater of high COD (pharmaceutical wastewater) or wastewater of low COD (dumpsite leachate), since the different conditions do not change the membrane characteristics. The experimental data show that none of the membranes can decrease the COD to the release limit in one step. However, if two-stage filtrations (nanofiltration followed by reverse osmosis) are accomplished for both of the wastewaters, a total COD reduction of 94% can be achieved. With the application of the two-stage filtration the COD of the wastewater of low COD can be decreased below the release limit but in case of wastewater of the high COD further treatment will be required.


Membrane filtration Pharmaceutical wastewater Dumpsite leachate Chemical oxygen demand Nanofiltration Reverse osmosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Ho, K. Sirkar, Membrane Handbook, (Chapman&Holl, New York, USA, 1992)Google Scholar
  2. [2]
    S. S. Madaeni, Y. Mansourpanah, Filtr. Separat. 40, 40 (2003)CrossRefGoogle Scholar
  3. [3]
    W. Reimann, I. Yeo, Desalination 109, 263 (1997)CrossRefGoogle Scholar
  4. [4]
    G. Del Re, G. Di Giacomo, L. Aloisio, M. Terreri, Desalination 119, 205 (1998)CrossRefGoogle Scholar
  5. [5]
    B. Balannec, M. Vourch, M. Rabiller-Baudry, B. Chaufer, Sep. Purif. Technol. 42, 195 (2005)CrossRefGoogle Scholar
  6. [6]
    O. Akoum, M. Y. Jaffrin, L. H. Ding, M. Frappart, J. Membrane Sci. 235, 111 (2004)CrossRefGoogle Scholar
  7. [7]
    J. Castelblanque, F. Salimbeni, Desalination 126, 293 (1999)CrossRefGoogle Scholar
  8. [8]
    R. Rautenbach, Th. Linn, Desalination 105, 63 (1996)CrossRefGoogle Scholar
  9. [9]
    R. Rautenbach, K. Vossenkaul, T. Linn, T. Katz, Desalination 108, 247 (1996)CrossRefGoogle Scholar
  10. [10]
    Z. Badani, H. Ait-Amar, A. Si-Salah, M. Brik, W. Fuchs, Desalination 185, 411 (2005)CrossRefGoogle Scholar
  11. [11]
    A. Bottino, G. Capannelli, G. Tocchi, M. Marcucci and G. Ciardelli, Membrane Technology, 2001, 9 (2001)CrossRefGoogle Scholar
  12. [12]
    P. Artiga, E. Ficaram, F. Malpei, J.M. Garrido, R. Méndez, Desalination 179, 161, (2005)CrossRefGoogle Scholar
  13. [13]
    E. Ferjani, E. Ellouze, R. Ben Amar, Desalination 177, 43 (2005)CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Edit Cséfalvay
    • 1
  • Péter M. Imre
    • 2
  • Péter Mizsey
    • 1
  1. 1.Department of Chemical and Environmental Process EngineeringBudapest University of Technology and Economics1521 BudapestHungary
  2. 2.Gedeon Richter Nyrt. H-1475BudapestHungary

Personalised recommendations