Skip to main content

Interaction of fibrinogen with nanosilica


Interaction of human plasma fibrinogen (HPF) with fumed nanosilica A-300 in a phosphate buffer solution (PBS) was studied using 1H NMR spectroscopy with layer-by-layer freezing-out of bulk and interfacial water in the temperature range of 210–273 K, TSDC (90 < T < 265 K), adsorption, FTIR, and UV spectroscopy methods. An increase in concentration of HPF in the PBS leads to a decrease in amounts of structured water (frozen at T < 273 K) because of coagulation of HPF molecules. Addition of nanosilica to the HPF solution strongly reduces the amounts of structured water because of adsorption interaction of HPF molecules with silica nanoparticles, self-association of HPF molecules, formation of denser packed hybrid agglomerates with HPF and silica, and lastly, because of conformational changes of HPF. A monolayer adsorption capacity of A-300 corresponds to 156 mg of HPF per gram of silica. The FTIR and UV spectra show that the HPF adsorption on silica leads to structural changes of the protein molecules. These changes and formation of hybrid HPF/A-300 aggregates can increase the rate of clotting that is of importance on nanosilica application as a component of tourniquet preparations.

This is a preview of subscription content, access via your institution.


  1. [1]

    Basic Characteristics of Aerosil, Technical Bulletin Pigments, Vol. 11, Degussa AG, Hanau, 1997.

  2. [2]

    V.M. Gun’ko, I.F. Mironyuk, V.I. Zarko, E.F. Voronin, V.V. Turov, E.M. Pakhlov, E.V. Goncharuk, Yu.M. Nychiporuk, T.V. Kulik, B.B. Palyanytsya, S.V. Pakhovchishin, N.N. Vlasova, P.P. Gorbik, O.A. Mishchuk, A.A. Chuiko, J. Skubiszewska-Zięba, W. Janusz, A.V. Turov and R. Leboda: “Morphology and surface properties of fumed silicas”, J. Colloid Interface Sci., Vol. 289, (2005), pp. 427–445.

    Article  CAS  Google Scholar 

  3. [3]

    A.A. Chuiko (Ed.): Silicas in Medicine and Biology, SMI, Stavropol, 1993.

    Google Scholar 

  4. [4]

    A.A. Chuiko (Ed.): Medical Chemistry and Clinical Application of Silica, Naukova Dumka, Kiev, 2003.

    Google Scholar 

  5. [5]

    M.W. Mosesson, J.P. DiOrio, I. Hernandez, J.F. Hainfeld, J.S. Wall and G. Grieninger: “The ultrastructure of fibrinogen-420 and the fibrin-420 clot”, Biophys. Chem. Vol. 112, (2004), pp. 209–214.

    Article  CAS  Google Scholar 

  6. [6]

    M. Matsuda: “Structure and function of fibrinogen inferred from hereditary dysfibrinogens”, Fibrinolysis Proteol., Vol. 14, (2000), pp. 187–197.

    Article  CAS  Google Scholar 

  7. [7]

    M.D.B. Oenick: “Studies on fibrin polymerization and fibrin structure — a retrospective”, Biophys. Chem., Vol. 112, (2004), pp. 187–192.

    Article  Google Scholar 

  8. [8]

    R.F. Doolittle: “Structural basis of the fibrinogen-fibrin transformation: contributions from X-ray crystallography”, Blood Rev., Vol. 17, (2003), pp. 33–41.

    Article  Google Scholar 

  9. [9]

    B. Blombäck and N. Bark: “Fibrinopeptides and fibrin gel structure”, Biophys. Chem., Vol. 112, (2004), pp. 147–151.

    Article  Google Scholar 

  10. [10]

    G.A. Skarja, J.L. Brash, P. Bishop and K.A. Woodhouse: “Protein and platelet interactions with thermally denatured fibrinogen and cross-linked fibrin coated surfaces”, Biomaterials, Vol. 19, (1998), pp. 2129–2138.

    Article  CAS  Google Scholar 

  11. [11]

    K.M. Evans and M.H. Schoenfisch: missing title of article, In: 225th American Chemical Society National Meeting, New Orleans, LA, March 2003.

  12. [12]

    G.S. Retzinger, B.C. Cook and A.P. DeAnglis: “The binding of Fibrinogen to surfaces and the identification of two distinct surface-bound species of the protein”, J. Colloid Interf. Sci., Vol. 168, (1994), pp. 514–521.

    Article  CAS  Google Scholar 

  13. [13]

    B.C. Cook: “Reactivity of human platelets with immobilized fibrinogen is dictated by the chemical character of the surface”, Thromb. Res., Vol. 104, (2001), pp. 39–48.

    Article  CAS  Google Scholar 

  14. [14]

    B.C. Cook and G.S. Retzinger: “Lipid microenvironment influences the processivity of adsorbed fibrin(ogen): enzymatic processing and adhesivity of the bound protein”, J. Colloid Interf. Sci., Vol. 162, (1994), pp. 171–181.

    Article  CAS  Google Scholar 

  15. [15]

    S. Imokawa, A. Sato, H. Hayakawa, M. Kotani, T. Urano and A. Takada: “Tissue factor expression and fibrin deposition in the lungs of patients with idopathic pulmonary fibrosis and systemic sclerosis”, Am. J. Respir. Crit. Care Med., Vol. 156, (1997), pp 631–636.

    CAS  Google Scholar 

  16. [16]

    R.C. Chambers: “Role of coagulation cascade proteases in lung repair and fibrosis”, Eur. Respir. J., Vol. 22, (2003), Suppl. 44, pp. 33s–35s.

    Article  CAS  Google Scholar 

  17. [17]

    F. Tuluc, A. Garcia, O. Bredetean, J. Meshki and S. P. Kunapuli: “Primary granule release from human neutrophils is potentiated by soluble fibrinogen through a mechanism depending on multiple intracellular signaling pathways”, Am. J. Physiol. Cell. Physiol., Vol. 287, (2004), pp. C1264–C1272.

    Article  CAS  Google Scholar 

  18. [18]

    R.K. Iler: The chemistry of Silica, John Wiley & Sons, New York, 1979.

    Google Scholar 

  19. [19]

    L.P. Legrand (Ed.): The Surface Properties of Silicas, Wiley, New York, 1998.

    Google Scholar 

  20. [20]

    B. Fubini, I. Fenoglio, G. Martra, R. Ceschino, M. Tomatis, R. Cavalli and M. Trotta: “An overview on the toxicity of inhaled nanoparticles”, in: J.P. Blitz and V.M. Gun’ko (Eds.): Surface Chemistry and Nanomaterials in Biomedical and Environmental Science, NATO Science Series II: Mathematics, Physics and Chemistry, Springer, Vol. 228, 2006, pp. 241–252.

  21. [21]

    C. Yongli, Z. Xiufang, G. Yandao, Z. Nanming, Z. Tingying and S. Xinqi: “Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles”, J. Colloid Interf. Sci., Vol. 214, (1999), pp. 38–45.

    Article  CAS  Google Scholar 

  22. [22]

    J. Hemmerlè, S.M. Altmann, M. Maaloum, J.K.H. Hörber, L. Heinrich, J.-C. Voegel and P. Schaaf: “Direct observation of the anchoring process during the adsorption of fibrinogen on a solid surface by force-spectroscopy mode atomic force microscopy”, Proc. Natl. Acad. Sci. USA, Biophysics, Vol. 96, pp. 6705–6710.

  23. [23]

    M. Malmsten and B. Lassen: “Competitive adsorption at hydrophobic surfaces from binary protein systems”, J. Colloid Interf. Sci. Vol. 166, (1994), pp. 490–498.

    Article  CAS  Google Scholar 

  24. [24]

    S.-Y. Jung, S.-M. Lim, F. Albertorio, G. Kim, M. C. Gurau, R.D. Yang, M.A. Holden and P.S. Cremer: “The Vroman effect: a molecular level description of fibrinogen displacement”, J. Am. Chem. Soc., Vol. 125, (2003), pp. 12782–12786.

    Article  CAS  Google Scholar 

  25. [25]

    V.M. Gun’ko, V.I. Zarko, E.F. Voronin, V.V. Turov, I.F. Mironyuk, I.I. Gerashchenko, E.V. Goncharuk, E.M. Pakhlov, N.V. Guzenko, R. Leboda, J. Skubiszewska-Zięba, W. Janusz, S. Chibowski, Yu.N. Levchuk and A.V. Klyueva: “Impact of some organics on structural and adsorptive characteristics of fumed silica in different media”, Langmuir, Vol. 18, (2002), pp. 581–596.

    Article  CAS  Google Scholar 

  26. [26]

    B.I. Gerashchenko, V.M. Gun’ko, I.I. Gerashchenko, R. Leboda, H. Hosoya and I.F. Mironyuk: “Probing the silica surfaces by red blood cells”, Cytometry, Vol. 49(2), (2002), pp. 56–61.

    Article  Google Scholar 

  27. [27]

    V.M. Gun’ko, A.V. Klyueva, Yu.N. Levchuk and R. Leboda: “Photon correlation spectroscopy investigations of proteins”, Adv. Colloid Interf. Sci., Vol. 105, (2003), pp. 201–328.

    Article  CAS  Google Scholar 

  28. [28]

    V.M. Gun’ko, V.I. Zarko, V.V. Turov, E.F. Voronin, I.F. Mironyuk and A.A. Chuiko: “Structural and adsorptive characteristics of fumed silicas in different media”, In: H.E. Bergna (Ed.): Colloidal Silica: Fundamentals and Applications, Taylor & Francis LLC, Salisbury, 2005, pp. 499–530.

    Google Scholar 

  29. [29]

    V.M. Gun’ko, V.V. Turov, V.M. Bogatyrev, V.I. Zarko, R. Leboda, E.V. Goncharuk, A.A. Novza, A.V. Turov and A.A. Chuiko: “Unusual properties of water at hydrophilic/hydrophobic interfaces”, Adv. Colloid Interf. Sci., Vol. 118, (2005), pp. 125–172.

    CAS  Google Scholar 

  30. [30]

    T.V. Varetska, S.M. Tsinkalovska and O.P. Demchenko: “Physiochemical properties of tryptic fragment of fibrinogen — inhibitor of fibrin polymerization”, Ukr. Biochem. Zh., Vol. 44, (1972), pp. 418–422.

    CAS  Google Scholar 

  31. [31]

    D.J. Taylor, N.P.O. Green and G.W. Stout: Biological Sciences, Vol. 1 and 2, 3rd ed., Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  32. [32]

    V.P. Glushko (Ed.): Handbook of Thermodynamic Properties of Individual Substances, Nauka, Moskow, 1978.

    Google Scholar 

  33. [33]

    J.H. Strange, J. Mitchell and J.B.W. Webber: “Pore surface exploration by NMR”, Magn. Reson. Imaging, Vol. 21, (2003), pp. 221–226.

    Article  CAS  Google Scholar 

  34. [34]

    D.W. Aksnes and L. Kimtys: “1H and 2H NMR studies of benzene confined in porous solids: melting point depression and pore size distribution”, Sol. State Nucl. Mag., Vol. 25, (2004), pp. 146–152.

    Article  CAS  Google Scholar 

  35. [35]

    S.W. Provencher: “A constrained regularization method for inverting data represented by linear algebraic or integral equations”, Comp. Phys. Comm., Vol. 27, (1982), pp. 213–227.

    Article  Google Scholar 

  36. [36]

    W.B. Muniz, F.M. Ramos and H.F. de Campos Velho: “Entropy-and Tikhonov-based regularization techniques applied to the backwards heat equation, Comput. Mathem. Appl., Vol. 40, (2000), pp. 1071–1084.

    Article  Google Scholar 

  37. [37]

    V.M. Gun’ko, V.I. Zarko, E.V. Goncharuk, L.S. Andriyko, V.V. Turov, Y.M. Nychiporuk, R. Leboda, J. Skubiszewska-Zięba, A.L. Gabchak, V.D. Osovskii, Y.G. Ptushinskii, G.R. Yurchenko, O.A. Mishchuk, P.P. Gorbik, P. Pissis and J.P. Blitz: “TSDC spectroscopy of relaxational and interfacial phenomena”, Adv. Colloid Interf. Sci., in press.

  38. [38]

    V.A. Belitser, T.V. Varetska, Y.P. Butylin, L. A. Tsaryuk, L. A. Svitalska, Y.M. Ena and O.A. Bunyak: “Determination of fibrinogen concentration in blood plasma”, Lab. Delo, Vol. 4, (1983), pp. 38–42.

    Google Scholar 

  39. [39]

    V.M. Gun’ko, V.I. Zarko, E.F. Voronin, E.V. Goncharuk, L.S. Andriyko, N.V. Guzenko, L.V. Nosach and W. Janusz: “Successive interaction of pairs of soluble organics with nanosilica in aqueous media”, J. Colloid Interf. Sci., Vol. 300, (2006), pp. 20–32.

    Article  CAS  Google Scholar 

  40. [40]

    S. Tunc, M.F. Maitz, G. Steiner, L. Vázquez, M.T. Pham and R. Salzer: “In situ conformational analysis of fibrinogen adsorbed on Si surfaces”, Coll. Surf. B: Biointerfaces, Vol. 42, (2005), pp. 219–225.

    Article  CAS  Google Scholar 

  41. [41]

    V.M. Gun’ko, V.V. Turov and A.A. Chuiko: “Fundamentals of nanosilica applications for human protection”, In: J.P. Blitz and V.M. Gun’ko (Eds.): Surface Chemistry and Nanomaterials in Biomedical and Environmental Science, NATO Science Series II: Mathematics, Physics and Chemistry, Springer, Vol. 228, 2006, pp. 177–190.

Download references

Author information



About this article

Cite this article

Rugal, A.A., Gun’ko, V.M., Barvinchenko, V.N. et al. Interaction of fibrinogen with nanosilica. cent.eur.j.chem. 5, 32–54 (2007).

Download citation


  • Fibrinogen
  • nanosilica
  • adsorption
  • FTIR
  • UV
  • 1H NMR
  • TSDC
  • unfrozen structured water