Central European Journal of Chemistry

, Volume 5, Issue 1, pp 230–238 | Cite as

On chromium direct ETAAS determination in serum and urine

  • Nadica Todorovska
  • Irina Karadjova
  • Sonja Arpadjan
  • Trajce Stafilov
Research Article

Abstract

A simple, accurate and reliable method for direct electrothermal atomic absorption spectrometric (ETAAS) determination of chromium in serum and urine samples without any preliminary sample pretreatment is described. Instrumental parameters are optimized in order to define: the most suitable atomizer, optimal temperature program and efficient modifier. An appropriate quantification method is proposed taking into account a matrix interference study. Pyrocoated graphite tubes and wall atomization, pretreatment temperature of 700 °C, atomization temperature of 2600 °C, hydrogen peroxide as modifier and standard addition calibration are recommended. The accuracy of the method proposed for Cr determination in serum and urine was confirmed by comparative analysis of parallel samples after wet or dry ashing as well as by the analysis of two certified reference materials: Serum, Clin Rep 1 and Lypochek Urine, level 1. The detection and determination limits achieved for both matrices are 0.08 µg/L and 0.15 µg/L respectively. The relative standard deviation varied between 15 and 18 % for the chromium content in the samples in the range 0.08–0.2 µg/L and between 4 and 7 % for the chromium content in the range 0.2–2.0 µg/L for both matrices.

Keywords

Chromium electrothermal atomic absorption spectrometry serum urine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. Ducros: “Chromium metabolism. A literature review”, Biol. Trace Elem. Res., Vol. 32, (1992), pp. 65–77.CrossRefGoogle Scholar
  2. [2]
    D.G.J. Barceloux: “Chromium”, Clin. Toxicol., Vol. 37, (1999), pp. 173–194.CrossRefGoogle Scholar
  3. [3]
    R. Cornelis, F. Borguet, S. Dyg and B. Griepink: “Chromium speciation studies in human plasma and stability studies of Cr(III) and Cr(VI) species in a candidate water reference material”, Mikrochim. Acta, Vol. 109, (1992), pp. 145–148.CrossRefGoogle Scholar
  4. [4]
    A. Taylor and P. Green: “Determination of chromium in serum by electrothermal atomisation atomic absorption spectrometry using totally pyrolytic graphite cuvettes, J. Anal. At. Spectrom., Vol. 3, (1988), pp. 115–118.CrossRefGoogle Scholar
  5. [5]
    B. Baumgardt, E. Jackwerth, H. Otto and G. Tőlg: “Trace analysis to determine heavy metal load in lung tissue. A contribution to substantiation of occupational hazards”, Int. Arch. Occup. Environ. Health, Vol. 58, (1986), pp. 27–34.CrossRefGoogle Scholar
  6. [6]
    International Program on Chemical Safety: Environmental Health Criteria-Chromium, Vol. 61, WHO, Geneva, 1988.Google Scholar
  7. [7]
    IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans, Vol. 7, (1987), p. 165.Google Scholar
  8. [8]
    C. Minoia and A. Cavalleri: “Chromium in urine, serum and red blood cells in the biological monitoring of workers exposed to different chromium valency states”, Sci. Total Environ., Vol. 71, (1988), pp. 323–327.CrossRefGoogle Scholar
  9. [9]
    S. Farhurst and C.A. Minty: The Toxicity of Chromium and Inorganic Chromium Compounds, Toxicity Review 21, The Health and Safety Executive of the U.K., London, 1989, p. 243.Google Scholar
  10. [10]
    Health effects assessment for hexavalent chromium, Environmental Protection Agency, 49, VI:EPA/540/1-86/019, 1984.Google Scholar
  11. [11]
    J.N. Maks, M.A. White and A.R. Boran: “Direct determination of chromium in urine by graphite-furnace atomic-absorption spectrophotometry”, At. Spectrosc., Vol. 9, (1988), pp. 73–75.Google Scholar
  12. [12]
    X.Q. Shan, Y. Zheng and Z.M. Ni: “Determination of chromium in urine by graphite-furnace atomic-absorption spectrometry after solvent-extraction with high-molecular-weight secondary alkyl amine”, At. Spectrosc., Vol. 11, (1990), pp. 116–124.Google Scholar
  13. [13]
    D.C. Paschal and G.G. Bailey: “Determination of chromium in urine with graphite-furnace atomic-absorption spectroscopy using Zeeman correction”, At. Spectrosc., Vol. 12, (1991), pp. 151–154.Google Scholar
  14. [14]
    R. Rubio, A. Sahuquillo, G. Rauret, L.G. Beltran and P. Quevauviller: “Systematic study of chromium determination in urine by graphite-furnace atomic-absorption spectrometry”, Anal. Chim. Acta, Vol. 283, (1993), pp. 207–212.CrossRefGoogle Scholar
  15. [15]
    E.A.-C. Cimadevilla, K. Wrobel, J.M.M. Gayon and A. Sanz-Medel: “Determination of chromium in biological fluids by electrothermal atomic absorption spectrometry using wall, platform and probe atomization from different graphite surfaces”, J. Anal. Atom. Spetrom., Vol. 9, (1994), pp. 117–123.CrossRefGoogle Scholar
  16. [16]
    V.A. Granadillo, L. Parra de Machado and R.A. Romero: “Determination of total chromium in whole blood, blood components, bone, and urine by fast furnace program electrothermal atomization AAS and using neither analyte isoformation nor background correction”, Anal Chem., Vol. 66, (1994), pp. 3624–3631.CrossRefGoogle Scholar
  17. [17]
    P. Borella, A. Bargellini, S. Salvioli and A. Cossarizza: “Use of flameless atomic absorption spectroscopy in immune cytolysis for nonradioactive determination of killer cell activity”, Clin Chem., Vol. 42, (1996), pp. 319–25.Google Scholar
  18. [18]
    P. Apostoli, G. Maranelli, P. G. Duca, P. Bavazzano, A. Bortoli, A. Cruciatti, G. Elia, C. Minoia, R. Piccinini, E. Sabbioni, G. Sciarra and C. Soave: “Reference values of urinary chromium in Italy”, Int. Arch. Occup. Environ. Health, Vol. 70, (1997), pp. 173–179.CrossRefGoogle Scholar
  19. [19]
    O. Mestek, T. Zima, M. Suchanek and J. Zilkova: “Direct determination of chromium in blood serum by electrothermal-atomization atomic absorption spectrometry”, Chemicke Listy, Vol. 92, (1998), pp. 746–750.Google Scholar
  20. [20]
    S.P. Quinaia and J.A. Nobrega: “A critical evaluation of the graphite furnace conditions for the direct determination of chromium in urine”, Fresenius J. Anal. Chem., Vol. 364, (1999), pp. 333–337.CrossRefGoogle Scholar
  21. [21]
    J.L. Burguera, M. Burguera, C. Rondon, L. Rodriguez, P. Carrero, Y.P. de Pena and E. Burguera: “Determination of chromium in urine by electrothermal atomic absorption spectrometry using different chemical modifiers”, J. Anal. At. Spectrom., Vol. 14, (1999), pp. 821–825.CrossRefGoogle Scholar
  22. [22]
    Y.L. Huang, I.C. Chuang, C.H. Pan, C. Hsiech, T.S. Shi and T.H. Lin: “Determination of chromium in whole blood and urine by graphite furnace AAS”, At. Spectrosc., Vol. 21, (2000), pp. 10–16.Google Scholar
  23. [23]
    M. Soylak, I. Narin, L. Elci and M. Dogan: “Copper, nickel, lead and chromium determination by atomic absorption spectrometry in urine after enrichment/separation on Amberlite XAD-2000”, Fresenius Environ. Bulletin, Vol. 11, (2002), pp. 132–136.Google Scholar
  24. [24]
    B.R. Nunes, C.G. Magalhaes and J.B.B. da Silva: “Fast determination of chromium in human serum by electrothermal atomic absorption spectrometry”, J. Anal. At. Spectrom., Vol. 17, (2002), pp. 1335–1338.CrossRefGoogle Scholar
  25. [25]
    F. Barbosa, S.S. de Souza, D. Santos and F.J. Kung: “Evaluation of electrodeposited tungsten chemical modifier for direct determination of chromium in urine by ETAAS”, Microchem. J., Vol. 78, (2004), pp. 7–13.CrossRefGoogle Scholar
  26. [26]
    J. Begerow, M. Turfeld and L. Dunemann: “New horizons in human biomonitoring of environmentally and occupationally relevant metals—sector-field ICP-MS versus electrothermal AAS”, J. Anal. Atom. Spetrom., Vol. 15, (2000), pp. 347–352.CrossRefGoogle Scholar
  27. [27]
    I. Rodushkin, F. Odman, R. Oloofsson and M.D. Axelsson: “Determination of 60 elements in whole blood by sector field inductively coupled plasma mass spectrometry”, J. Anal. Atom. Spetrom., Vol. 15, (2000), pp. 937–944.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nadica Todorovska
    • 1
  • Irina Karadjova
    • 2
  • Sonja Arpadjan
    • 2
  • Trajce Stafilov
    • 3
  1. 1.Institute of Preventive Medical Care and ToxicologyMilitary Health Institution CenterSkopjeRepublic of Macedonia
  2. 2.Faculty of ChemistryUniversity of SofiaSofiaBulgaria
  3. 3.Institute of Chemistry, Faculty of ScienceSt. Cyril and Methodius UniversitySkopjeRepublic of Macedonia

Personalised recommendations