Skip to main content
Log in

New homodi-and heterotrinuclear metal complexes of Schiff base compartmental ligand: interaction studies of copper complexes with calf thymus DNA

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

The new homodinuclear complexes 1–4 of the type [LMII 2Cl2], heterotrinuclear complexes 5 and 6 of the type [LMII 2SnIVCl6] where M = CuII, MnII, CoII, NiII and CuII and NiII, respectively have been synthesized and characterized by elemental analysis and various spectroscopic techniques. The homodinuclear complexes possess two different environments (N2 and N2O2donor sets) for holding the metal ions. The metal ion in N2 set exhibits square planar geometry with two chloride ions in the inner sphere but rhombic structure is found in tetradentate N2O2 Schiff base cavity while in heterotrinuclear complexes SnIV atom is in the octahedral environment. The interaction of complexes 1 and 5 with calf thymus DNA was carried out by absorption spectroscopy and cyclic voltammetry. The intrinsic binding constants (K b ) of complex 1 and 5 were determined as 3.2 × 103 M−1 and 9.6 × 103 M−1, respectively suggesting that complex 5 binds more strongly to CT-DNA than complex 1. Fluorescence studies along with viscosity measurements have also been checked to authenticate the binding of metal complexes with DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Ali, A.H. Mirza, R.J. Butcher, M.T. Tarafder, T.B. Keat and A.M. Ali: “Biological activity of palladium (II) and platinum (II) complexes of the acetone Schiff bases of S-methyl-and S-benzyldithiocarbazate and the X-ray crystal structure of the [Pd (asme)2] (asme = anionic form of the acetone Schiff base of S-methyldithiocarbazate complex)”, J. Inorg. Biochem., Vol. 92, (2002), pp. 141–148.

    Article  Google Scholar 

  2. X. Tai, X. Yin, Q. Chen and M. Tan: “Synthesis of some Transition Metal Complexes of a Novel Schiff Base Ligand Derived from 2,2’-bis(p-Methoxyphenylamine) and Salicylicaldehyde”, Molecules., Vol. 8, (2003), pp. 439–443.

    Article  CAS  Google Scholar 

  3. P.G. Cozzi: “Metal-Salen Schiff base complexes in catalysis: practical aspects”, Chem. Soc. Rev., Vol. 33, (2004), pp. 410–421.

    Article  CAS  Google Scholar 

  4. A.D. Naik, S.M. Annigeri, U.B. Gangadharmath, V.K. Revankar and V.B. Mahale: “Bimetallic complexes of a potentially pentadentate, acyclic, symmetrical compartmental Schiff base ligand that provides suitable topology for an exogenous bridge”, Transition Met. Chem., Vol. 27, (2002), pp. 333–336.

    Article  CAS  Google Scholar 

  5. M. Motevalli, B.C. Parkin, R. Rammauth and A.C. Sullivan: “The first bis (imido) transition metal Schiff-base complexes”, J. Chem. Soc. Dalton. Trans., (2000), pp. 2661–2662.

  6. G.D. Liu, J.P. Liao, S.S. Huang, G.L. Shen and R.Q. Yu: “Fluorescence Spectral Study of Interaction of Water-soluble Metal Complexes of Schiff-base and DNA”, Analy. Sci., Vol. 17, (2001), pp. 1031–1036.

    Article  Google Scholar 

  7. I.A. Koval, M. Huisman, A.F. Stassen, P. Gamez, M. Lutz, A.L. Spek, D. Pursche, B. Krebs and J. Reedjik: “New dinuclear Co(II) and Mn(II) complexes of the phenol-based compartmental ligand containing formyl and amine functions: structural, spectroscopic and magnetic properties”, Inorg. Chim. Acta., Vol. 357, (2004), pp. 294–300.

    Article  CAS  Google Scholar 

  8. D.E. Fenton: “Structural diversity in oligonuclear nickel (II) complexes of unsymmetrical compartmental ligands”, Inorg. Chem. Commun., Vol. 5, (2002), pp. 537–547.

    Article  CAS  Google Scholar 

  9. Z. Xu, L.K. Thompson, C.J. Matthews, D.O. Miller, A.E. Goeta, C. Wilson, J.A.K. Howard, M. Ohba and H. Okawa: “Dinuclear and tetranuclear copper (II) complexes with bridging (N-N) diazine ligands: variable magnetic exchange topologies”, J. Chem. Soc. Dalton Trans., (2000), pp. 69–77.

  10. J. Liu, Q. Li, Y. Yu and X. Fang: “Spectroscopic and Electrochemical Studies of DNA Breakage Induced by Dopamine and Copper Ion”, Analy. Sci., Vol. 19, (2003), pp. 1099–1102.

    Article  CAS  Google Scholar 

  11. T. Biver, F. Secco, M.R. Tine and M. Venturini: “Kinetics and equiliria for the formation of a new DNA metal-intercalator: the cyclic polyamine Neotrien/copper (II) complex”, J. Inorg. Biochem., Vol. 98, (2004), pp. 33–40.

    Article  CAS  Google Scholar 

  12. S. Dhar, D. Senapati, P.K. Das, P. Chattopadhyay, M. Nethaji and A.R. Chakravarty: “Ternary Copper Complexes for Photocleavage of DNA by Red Light: Direct Evidence for Sulfur-to-Copper Charge Transfer and d-d Band Involvement”, J. Am. Chem. Soc., Vol. 125, (2003), pp. 12118–12124.

    Article  CAS  Google Scholar 

  13. J. Gao, J.H. Reibenspies and A.E. Martell: “Selective recognition of thymidylylthymidine (TpT) and antitumor effects of a macrocyclic dizinc (II) complex”, Org. Biomol. Chem., Vol. 1, (2003), pp. 4242–4247.

    Article  CAS  Google Scholar 

  14. Z.D. Xu, H. Liu, S.L. Xiao, M. Yang and X.H. Bu: “Synthesis, crystal structure, antitumor activity and DNA-binding study on the Mn (II) complex of 2H-5-hydroxy-1, 2, 5-oxadiazo [3,4-f] 1,10-phenanthroline”, J. Inorg. Biochem., Vol. 90, (2002), pp. 79–84.

    Article  CAS  Google Scholar 

  15. Z.D. Xu, H. Liu, M. Wang, S.L. Xiao, M. Yang and X.H. Bu: “Manganese (II) complex of 6,7-dicyanodipyridoquinoxaline with antitumor activities: synthesis, crystal structure and binding with DNA”, J. Inorg. Biochem., Vol. 92, (2002), pp. 149–155.

    Article  CAS  Google Scholar 

  16. N.K. Singh, S.B. Singh and A. Shrivastav: “Antitumour and Immunomodulatory effects of Cu (II) complexes of Thiobenzyhdrazide”, Metal-Based. Drugs., Vol. 9, (2002), pp. 109–118.

    CAS  Google Scholar 

  17. N. Hoti, D. Zhu, Z. Song, Z. Wu, S. Tabassum and M. Wu: “p53-dependent apoptotic mechanism of a new designer bimetallic compound Tri-phenyl tin benzimidazolethiol copper chloride (TPT-CuCl2): In vivo studies in Wister rats as well as in vitro studies in human cervical cancer cells”, J. Phar. Exp. Therapeutic., Vol. 311, (2004), pp. 22–33.

    Article  CAS  Google Scholar 

  18. J. Marmur: “Procedure for isolation of deoxyribonucleic acid from microorganism”, J. Mol. Biol., Vol. 3, (1961), pp. 208–214.

    Article  CAS  Google Scholar 

  19. M.E. Reichmann, S.A. Rice, C.A. Thomas and P. Doty: “A further examination of the molecular weight and size of deoxypentose nucleic acid,” J. Am. Chem. Soc., Vol. 76, (1954), pp. 3047–3053.

    Article  CAS  Google Scholar 

  20. A. Wolfe, G.H. Shimer and T. Meehan: “Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA,” Biochemistry, Vol. 26, (1987), pp. 6392–6396.

    Article  CAS  Google Scholar 

  21. G. Cohen and H. Eisenberg: “Viscosity and sedimentation study of sonicated DNA-proflavine complexes”, Biopolymers, Vol. 8, (1969), pp. 45–55.

    Article  CAS  Google Scholar 

  22. M. Eriksson, M. Leijon, C. Hiort, B. Norden and A. Graslund: “Binding of DELTA-and LAMBDA-[Ru(Phen)3]2+ to [d(GCGATCGCG)]2 studied by NMR”, Biochemistry, Vol. 33, (1994), pp. 5031–5040.

    Article  CAS  Google Scholar 

  23. J. Zhang, P. Braunstein and R. Welter: “Stable chlorides-induced monohapto-Bonding Mode for an allyl ligand in a Pd (II) complex bearing a new bidentate phosphonite-oxazoline ligand”, Inorg. Chem., Vol. 43, (2004), pp. 4172–4177.

    CAS  Google Scholar 

  24. M.A. Ali, A.H. Mirza, M. Nazimuddin, H. Rahman and R.J. Butcher: “The preparation and characterization of mono-and bis-chelated cadmium (II) complexes of the di-2-pyridyl ketone Schiff base of S-methyldithiocarbazate (Hdpksme) and the X-ray crystal structure of the [Cd (dpksme)2].0.5 MeOH complex”, Transition Met. Chem., Vol. 27, (2002), pp. 268–273.

    Article  CAS  Google Scholar 

  25. P. Nag, R. Bohra, R.C. Mehrotra and R. Ratnani: “Chemistry of oxomolybdenum(V) and (VI) complexes incorporating oxygen, nitrogen, and/or sulfur donor atoms. Part 1. Synthesis and characterization of [Mo2O3L4] (LH = HSCH2CH2CO2H, HSCH2CO2Me or HSCH2CH2CO2Me) and [MoO2L’2] (L’H = HOC6H4NH2, HOCH2C6H4NH2, HOC6H4CHO or HOC10H8N)”, Trans. Met. Chem., Vol. 27, (2002), pp. 321–325.

    Article  CAS  Google Scholar 

  26. C. Ma, Y. Han, R. Zhang and D. Wang: “Self-assembly of diorganotin (IV) moieties and 2-pyrazinecarboxylic acid: syntheses, characterizations and crystal structures of monomeric, polymeric or trinuclear macrocyclic compounds”, Dalton Trans., (2004), pp. 1832–1840.

  27. R.N. Prasad, M. Agarwal and S. Sharma: “Copper (II) complexes of tetraazamacrocycles derived from b-diketones and diamino alkenes”, Indian J. Chem., Vol. 43A, (2004), pp. 337–340.

    CAS  Google Scholar 

  28. S.K. Mandal and K. Nag: “Synthesis of Phenoxo-bridged Dicopper (II) Complexes of N-(2-Aminoalkyl) salicylaldimines and Their Use in the Formation of Monohalogeno-complexes and Non — symmetrical Quadridentate Schiff base Complexes”, J. Chem. Soc. Dalton Trans., (1984), pp. 2839–2841.

  29. Y. Dong, G.A. Lawrance, L.F. Lindoy and P. Turner: “Macrocyclic ligand design. Interaction of a series of successively N-benzylated derivatives of 1,4,8,11-tetraazacyclotetradecane (cyclam) with copper (II) and Ni (II)”, J. Chem. Soc. Dalton Trans., (2003), pp. 1567–1576.

  30. F. Athar, F. Arjmand and S. Tabassum: “New asymmetric N2S2 marocycles, their metal chelates and the photokinetics of DNA-complex interaction”, Transition Met. Chem., Vol. 26, (2001), pp. 426–429.

    Article  CAS  Google Scholar 

  31. C. Jayabalakrishnan, R. Karvembu and K. Natarajan: “Catalytic and antimicrobial activities of new ruthenium (II) unsymmetrical Schiff base complexes”, Trans. Met. Chem., Vol. 27, (2002), pp. 790–794.

    Article  CAS  Google Scholar 

  32. L. Tei, A.J. Blake, A. Bencini, B. Valtancoli, C. Wilson and M. Schroder: “Synthesis, solution studies and structural characterization of complexes of a mixed oxa-aza macrocycle bearing pendant amino acids”, J. Chem. Soc. Dalton Trans., (2000), pp. 4122–4129.

  33. F.A. Bovey: N.M.R. Data Tables for Organic Compounds, Interscience, New York, 1967.

    Google Scholar 

  34. Z.S. Yang, Y.L. Wang and G.C. Zhao: “The interaction of Copper-Bipyridyl Complex with DNA and Cleavage to DNA”, Anal. Sci., Vol. 20, (2004), pp. 1127–1130.

    Article  CAS  Google Scholar 

  35. S. Mahadevan and M. Palaniandavar: “Spectroscopic and Voltammetric Studies on Copper Complexes of 2,9-Dimethyl-1, 10-phenanthrolines Bound to Calf Thymus DNA”, Inorg. Chem., Vol. 37, (1998), pp. 693–700.

    Article  CAS  Google Scholar 

  36. X. Lu, K. Zhu, M. Zhang, H. Liu and J. Kang: “Voltammetric studies of the interaction of transition-metal complexes with DNA”, J. Biochem. Biophys. Methods., Vol. 52, (2002), pp. 189–200.

    Article  CAS  Google Scholar 

  37. T.W. Welch and H.H. Thorp: “Distribution of metal complexes bound to DNA determined by Normal Pulse Voltammetry”, J. Phys. Chem., Vol. 100, (1996), pp. 13829–13836.

    Article  CAS  Google Scholar 

  38. Q. Li, H. Wang, P. Yang and M. Guo: “Diorganotin (IV) antitumor agent (C2H5)SnCl2(Phen)/nucleotides aqueous and solid state coordination chemistry and its DNA binding studies”, J. Inorg. Biochem., Vol. 64, (1996), pp. 181–187.

    Article  CAS  Google Scholar 

  39. F. Arjmand and M. Chauhan: “Binding studies of asymmetric pentacoordinate copper (II) complexes containing phenanthroline and ethane-1,2-diamine ligands with calf thymus DNA”, Helv. Chim. Acta., Vol. 88, (2005), pp. 2413–2423.

    Article  CAS  Google Scholar 

  40. C.L. Liu, J.Y. Zhou, Q.X. Li, L.J. Wang, Z.R. Liao and H.B. Xu: “DNA damage by copper (II) complexes: coordination-structural dependence of reactivities”, J. Inorg. Biochem., Vol. 75, (1999), pp. 233–240.

    Article  CAS  Google Scholar 

  41. M. Baldini, M.B. Ferrari, F. Bisceglie, G. Pelosi, S. Pinelli and P. Tarasconi: “Cu (II) Complexes with Heterocyclic Substituted Thiosemicarbazones: The case of 5-Formyluracil. Synthesis, Characterization, X-ray Structures, DNA Interaction Studies and Biological Activity”, Inorg. Chem., Vol. 42, (2003), pp. 2049–2055.

    Article  CAS  Google Scholar 

  42. M. Chauhan and F. Arjmand: “Synthesis, characterization and interaction of a new chiral trinuclear complex [bis(aquodiaminotryptophanato) CuII-Sn IV2 ]chloride with calf thymus DNA,” Trans. Met. Chem., Vol. 30, (2005), pp. 481–487.

    Article  CAS  Google Scholar 

  43. L. Mishra, A.K. Yadav, S. Srivastava and A.B. Patel: “Synthesis, spectroscopic, electrochemical and antibacterial studies of new Ru (II) 1,10-phenanthroline complexes containingarydiazopentane-2,4 dione as co ligand”, New. J. Chem., Vol. 24, (2000) pp. 505–510.

    Article  CAS  Google Scholar 

  44. N. Hoti, J. Ma, S. Tabassum, Y. Wang and M. Wu: “Triphenyl Tin Benzimidazolethiol, a Novel Antitumor Agent, Induces Mitochondrial-Mediated Apoptosis in Human Cervical Cancer Cells via Suppression of HPV-18 Encoded E6”, J. Biochem., Vol. 134, (2003), pp. 521–528.

    Article  CAS  Google Scholar 

  45. X. G. Sun, E.H. Cao, X.Y. Zhang, D. Liu and C. Bai: “The divalent cation-induced DNA condensation studies by atomic force microscopy and spectra analysis”, Inorg. Chem. Commun., Vol. 5, (2002), pp. 181–186.

    Article  CAS  Google Scholar 

  46. A. Jancso, B. Henry, P. Rubini, G. Vanko and T. Gajda: “Dimethyltin (IV) cation induced amide deprotonation of aspartic acid containing dipeptides”, J. Chem. Soc. Dalton. Trans., (2000), pp. 1941–1947.

  47. R. Barbieri, A. Silvestri, A.M. Guiliani, V. Piro, F.D. Simone and G. Madonia: “Organotin compounds and deoxyribonucleic acid”, J. Chem. Soc. Dalton. Trans., (1992), pp. 585–590.

  48. B.C. Baguley and M. LeBert: “Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effect”, Biochemistry, Vol. 23, (1984), pp. 937–943.

    Article  CAS  Google Scholar 

  49. M.S. Deshpande and A. Kumbhar: “Mixed-ligand complexes of ruthenium (II) incorporating a diazo ligand: Synthesis, characterization and DNA binding,” J. Chem. Sci., Vol. 117, (2005), pp. 153–159.

    CAS  Google Scholar 

  50. Y.B. Zeng, N. Yang, W.S. Liu and N. Tang: “Synthesis, characterization and DNA-binding properties of La (III) complex of chrysin”, J. Inorg. Biochem., Vol. 97, (2003), pp. 258–264.

    Article  CAS  Google Scholar 

  51. J. Liu, T. Zhang, T. Lu, L. Qu, H. Zhou, Q. Zhang and L. Ji: “DNA-binding and cleavage studies of macrocyclic copper (II) complexes”, J. Inorg. Chem., Vol. 91, (2002), pp. 269–276.

    CAS  Google Scholar 

  52. J.R. Lakowiez and G. Webber: “Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules”, Biochemistry, Vol. 12, (1973), pp. 4161–4170.

    Article  Google Scholar 

  53. S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires: “Neither Δ — nor Λ — tris (phenanthroline) ruthenium (II) binds to DNA by classical intercalation”, Biochemistry, Vol. 31, (1992), pp. 9319–9324.

    Article  CAS  Google Scholar 

  54. S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires: “Tris (phenanthroline) ruthenium (II) enantiomer interactions with DNA: Mode and specificity of binding”, Biochemistry, Vol. 32, (1993), pp. 2573–2584.

    Article  CAS  Google Scholar 

  55. Y. Xiong, X.F. He, X.H. Zou, J.Z. Wu, X.M. Chen, L.N. Ji, R.H. Li, J.Y. Zhou and K.B. Yu: “Interaction of polypyridyl ruthenium (II) containing non-planar ligand with DNA”, J. Chem. Soc. Dalton Trans., (1999), pp. 19–23.

  56. J. Liu, H. Zhang, C. Chen, H. Deng, T. Lu and L. Ji: “Interaction of macrocyclic copper (II) complexes with calf thymus DNA: effects of the side chains of the ligands on the DNA-binding behaviors”, Dalton Trans., (2003), pp. 114–119.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Mathur, S., Tabassum, S. New homodi-and heterotrinuclear metal complexes of Schiff base compartmental ligand: interaction studies of copper complexes with calf thymus DNA. cent.eur.j.chem. 4, 502–522 (2006). https://doi.org/10.2478/s11532-006-0020-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-006-0020-6

Keywords

Navigation