Skip to main content
Log in

Complex symmetrized calculations on ammonia vibrational levels

  • Published:
Central European Journal of Chemistry

Abstract

This paper introduces a fully symmetrized Hamiltonian formalism designed for description of vibrational motion in ammonia (and any XH3 molecule). A major feature of our approach is the introduction of complex basis vibrational wavefunctions in product form, satisfying the complex symmetry species (CSS) of the molecular symmetric top point group (D 3h ). The described formalism for ammonia is an adaptation of the approach, previously developed and applied to benzene, based on the CSS of the point group D 6h . The molecular potential energy surface (PES) is presented in the form of a Taylor series expansion around the planar equilibrium state. Using the described formalism, calculations have been carried out on the vibrational overtone and combination levels in 14NH3 up to vibrational excitation energies corresponding to the fourth N-H stretch overtone. The results from the calculations are adjusted to experimentally measured data, in order to determine the values of the harmonic and some anharmonic force constants of the molecular PES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Herzberg: Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, Princeton, 1945.

    Google Scholar 

  2. K.K. Lehmann and S.L. Coy: “Spectroscopy and intramolecular dynamics of highly excited vibrational states of NH3”, Spectrochim. Acta A, Vol. 84, (1988), pp. 1389–1406.

    CAS  Google Scholar 

  3. S.L. Coy and K.K. Lehmann: “Modeling the rotational and vibrational structure of the i.r. and optical spectrum of NH3”, Spectrochim. Acta A, Vol. 45, (1989), pp. 47–56.

    Article  Google Scholar 

  4. C. Cottaz, I. Kleiner, G. Tarrago, L.R. Brown, J.S. Margolis, R.L. Poynter H.M. Pickett, T. Fouchet, P. Drossart and E. Lellouch: “Line positions and intensities in the 2ν24 vibrational system of 14NH3 near 5–7 μm”, J. Mol. Spectrosc., Vol. 203, (2000), pp. 285–309.

    Article  CAS  Google Scholar 

  5. I. Kleiner, G. Tarrago and L.R. Brown: “Positions and intensities in the 2ν224 vibrational system of 14NH3 near 4 μm”, J. Mol. Spectrosc., Vol. 173, (1995), pp. 120–145.

    Article  CAS  Google Scholar 

  6. I. Kleiner, L.R. Brown, G. Tarrago, Q-L. Kou, N. Picque, G. Guelachvili, V. Dana and J-Y. Mandin: “Positions and intensities in the 2ν413 vibrational system of 14NH3 near 3 μm”, J. Mol. Spectrosc., Vol. 193, (1999), pp. 46–71.

    Article  CAS  Google Scholar 

  7. P.R. Bunker and P. Jensen: Molecular Symmetry and Spectroscopy, 2nd ed., NRC Research, Ottawa, 1998.

    Google Scholar 

  8. H. Lin, W. Thiel, S.N. Yurchenko, M. Carajal and P. Jensen: “Vibrational energies for NH3 based on high level ab initio potential energy surfaces”, J. Chem. Phys., Vol. 117, (2002), pp. 11265–11276.

    Article  CAS  Google Scholar 

  9. D. Rush and K. Wiberg: “Ab initio CBS-QCI calculations of the inversion mode of ammonia”, J. Phys. Chem. A, Vol. 101, (1997), pp. 3143–3151.

    Article  CAS  Google Scholar 

  10. N. Aquino, G. Campoy and H. Yee-Madeira: “The inversion potential for NH3 using a DFT approach”, Chem. Phys. Lett., Vol. 296, (1998), pp. 111–116.

    Article  CAS  Google Scholar 

  11. P.R. Bunker, W. Kraemer and V. Spirko: “An ab initio investigation of the potential function and rotation-vibration energies of NH3”, Can. J. Phys., Vol. 62, (1984), pp. 1801–1805.

    CAS  Google Scholar 

  12. D. Luckhaus: “6D vibrational quantum dynamics: Generalized coordinate discrete variable representation and (a)diabatic contraction”, J. Chem. Phys., Vol. 113, (2000), pp. 1329–1347.

    Article  CAS  Google Scholar 

  13. L. Celine, N.C. Handy, S. Carter and J.M. Bowman: “The vibrational levels of ammonia”, Spectrochim. Acta A, Vol. 58, (2002), pp. 825–838.

    Article  Google Scholar 

  14. P. Rosmus, P. Botschwina, H.-J. Werner, V. Vaida, P.C. Engelking and M.I. McCarthy: “Theoretical A1A2”-X1A1 absorption and emission spectrum of ammonia”, J. Chem. Phys., Vol. 86, (1987), pp. 6677–6692.

    Article  CAS  Google Scholar 

  15. V. Ŝpirko and W.P. Kraemer: “Anharmonic potential function and effective geometries for the NH3 molecule”, J. Mol. Spectrosc., Vol. 133, (1989), pp. 331–344.

    Article  Google Scholar 

  16. V. Ŝpirko: “Vibrational anharmonicity and the inversion potential function of NH3”, J. Mol. Spectrosc., Vol. 101, (1983), pp. 30–45.

    Google Scholar 

  17. T. Rajamäki, A. Miani, J. Pesonen and L. Halonen: “Six-dimensional variational calculations for vibrational energy levels of ammonia and its isotopomers”, Chem. Phys. Lett., Vol. 363, (2002), pp. 226–232.

    Article  Google Scholar 

  18. N.C. Handy, S. Carter and S.M. Colwell: “The vibrational energy levels of ammonia”, Mol. Phys., Vol. 96, (1999), pp. 477–491.

    Article  CAS  Google Scholar 

  19. C. Leonard, N.C. Handy, S. Carter and J.M. Bowman: “The vibrational levels of ammonia”, Spectrochim. Acta A, Vol. 58, (2002), pp. 825–838.

    Article  Google Scholar 

  20. T. Lukka, E. Kauppi and L. Halonen: “Fermi resonances and local models in pyramidal XH3 molecules: An application to arsine (AsH3) overtone spectra”, J. Chem. Phys., Vol. 102, (1995), pp. 5200–5206.

    Article  CAS  Google Scholar 

  21. E. Kauppi and L. Halonen: “Five dimensional local mode-Fermi resonance model for overtone spectra of ammonia”, J. Chem. Phys., Vol. 103, (1995), pp. 6861–6872.

    Article  CAS  Google Scholar 

  22. J. Pesonen, A. Miani and L. Halonen. “New inversion coordinate for ammonia: Application to a CCSD(T) bidimensional potential energy surface”, J. Chem. Phys., Vol. 115, (2001), pp. 1243–1250.

    Article  CAS  Google Scholar 

  23. T. Rajamäki, A. Miani and L. Halonen: “Vibrational energy levels for symmetric and asymmetric isotopomers of ammonia with an exact kinetic energy operator and new potential energy surfaces”, J. Chem. Phys., Vol. 118, (2003), pp. 6358–6369.

    Article  Google Scholar 

  24. F. Gatti, C. Iung, C. Leforestier and X. Chapuisat: “Fully coupled 6D calculations of the ammonia vibrational-inversion tunneling states with a split Hamiltonian pseudospectral approach”, J. Chem. Phys., Vol. 111, (1999), pp. 7236–7243.

    Article  CAS  Google Scholar 

  25. J.M.L. Martin, T.J. Lee and P.R. Taylor: “An accurate ab initio quartic force field for ammonia”, J. Chem. Phys., Vol. 97, (1992), pp. 8361–8371.

    Article  CAS  Google Scholar 

  26. D. Lauvergnat and A. Nauts: “A harmonic adiabatic approximation to calculate vibrational states of ammonia”, Chem. Phys., Vol. 305, (2004), pp. 105–113.

    Article  CAS  Google Scholar 

  27. E.B. Wilson, J.C. Decius and P.C. Cross: Molecular Vibrations, Mc Graw-Hill, New York, 1955.

    Google Scholar 

  28. S. Rashev, M. Stamova and S. Djambova: “A quantum mechanical description of vibrational motion in benzene in terms of completely symmetrized set of complex vibrational coordinates and wavefunctions”, J. Chem. Phys., Vol. 108, (1998), pp. 4797–4803.

    Article  CAS  Google Scholar 

  29. S. Rashev, M. Stamova and L. Kancheva: “Quantum mechanical study of intramolecular vibrational energy redistribution in the second CH stretch overtone state in benzene”, J. Chem. Phys., Vol. 109, (1998), pp. 585–591.

    Article  CAS  Google Scholar 

  30. S. Rashev: “Complex Symmetrized Analysis of Benzene Vibrations”, Int. J. Quantum Chem., Vol. 89, (2002), pp. 292–298.

    Article  CAS  Google Scholar 

  31. S. Rashev: “Large Scale Quantum Mechanical Calculations on the Benzene Vibrational System”, Recent Res. Developments in Phys. Chem., Vol. 37/661(2), (2004), pp. 279–308.

    Google Scholar 

  32. J. Chang and R.E. Wyatt: “Preselecting paths for multiphoton dynamics, using artificial intelligence”, J. Chem. Phys., Vol. 85, (1986), pp. 1826–1839.

    Article  CAS  Google Scholar 

  33. S.M. Lederman and R.A. Marcus: “The use of artificial intelligence methods in studying quantum intramolecular vibrational dynamics”, J. Chem. Phys., Vol. 88, (1988), pp. 6312–6321.

    Article  CAS  Google Scholar 

  34. J.K. Cullum, R.A. Willowghby: Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vols. I, II, Birkhauser, Boston, 1985.

    Google Scholar 

  35. I.M. Mills: “Selection rules for vibronic transitions in symmetric top molecules”, Mol. Phys., Vol. 7, (1964), pp. 549–563.

    Article  CAS  Google Scholar 

  36. R.G. Della Valle: “Local-mode to normal-mode hamiltonian transformation for X-H stretchings”, Mol. Phys., Vol. 63, (1988), pp. 611–621.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Rashev, S., Tsonev, L. & Zhechev, D.Z. Complex symmetrized calculations on ammonia vibrational levels. cent.eur.j.chem. 3, 556–569 (2005). https://doi.org/10.2478/BF02479282

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02479282

Keywords

Navigation