Skip to main content

Novel Ni−Fe-oxide systems for catalytic oxidation of cyanide in an aqueous phase

Abstract

Catalytic activity of mixed Ni−Fe oxide systems with respect to air oxidation of aqueous cyanide solution at 308 K was investigated. The catalysts employed were prepared by an oxidation-precipitation method at room temperature and were characterized by powder X-ray diffraction (XRD), Mössbauer spectroscopy, and chemical analysis. The cyanide oxidation rate was found to be dependent on the catalyst's calcination temperature, pH of the medium, and catalyst loading. Results revealed that the catalyst calcined at 120°C is the most active where up to 90% of free cyanide (4 mM) was removed after oxidation for 30 minutes in the presence of 2.5 g/L catalyst at pH 9.5. The cyanide conversion becomes less favorable as the pH of the solution increases (with other constant parameters). The selectivity data showed that carbon dioxide is the main oxidation product, regardless of pH of the solution.

This is a preview of subscription content, access via your institution.

References

  1. D.W. Grosse: “Treatment technologies for hazardous wastes. 4. A review of alternative treatment processes for metal bearing hazardous-waste streams”, J. Air Pollut. Control Asoc., Vol. 36, (1986), pp. 603–614.

    CAS  Google Scholar 

  2. S.Q. Hassan, M.P. Vitello, M.J. Kupferle and D.W. Grosse: “Treatment technology evaluation for aqueous metal and cyanide bearing hazardous wastes (F007),” J. Air Waste Manage. Assoc., Vol. 41, (1991), pp. 710–715.

    CAS  Google Scholar 

  3. D.A. Kunz, R.F. Fernandez and P. Parab: “Evidence that bacterial cyanide oxygenase is a pterin-dependent hydroxylase”, Biochem. Bioph. Res. Co., Vol. 287, (2001), pp. 514–518.

    Article  CAS  Google Scholar 

  4. C.S. Wang, D.A. Kunz and B.J. Venables: “Incorporation of molecular oxygen and water during enzymatic oxidation of cyanide by Pseudomonas fluorescens NCIMB 11764”, Appl. Environ. Microb., Vol. 6, (1996), pp. 2195–2197.

    Google Scholar 

  5. M. Futakawa, H. Takahashi, G. Inoue et al.: “Treatment of concentrated cyanide waste-water”, Desal., Vol. 98, (1994), pp. 345–352.

    Article  CAS  Google Scholar 

  6. N. Costarramone, A. Kneip and A. Castetbon: “Ferrate (VI) oxidation of cyanide in water”, Environ. Technol., Vol. 25, (2004), pp. 945–955.

    CAS  Article  Google Scholar 

  7. C.S. Fugivara, P.T.A. Sumodjo, A.A. Cardoso et al.: “Electrochemical decomposition of cyanides on tin dioxide electrodes in alkaline media”, Analyst, Vol. 121, (1996), pp. 541–545.

    Article  CAS  Google Scholar 

  8. A. Stavart and A.V. Lierde: “Electrooxidation of cyanide on cobalt oxide anodes”, J. Appl. Electrochem., Vol. 31, (2001), pp. 469–474.

    Article  CAS  Google Scholar 

  9. M.R.V. Lanza and R. Bertazzoli: “Cyanide oxidation from wastewater in a flow electrochemical reactor”, Ind. & Eng. Chem. Res., Vol. 41, (2002), pp. 22–26.

    Article  CAS  Google Scholar 

  10. J. Lu, D.B. Dreisinger and W.C. Cooper: “Anodic oxidation of copper cyanide on graphite anodes in alkaline solution”, J. Appl. Electrochem., Vol. 32, (2002), pp. 1119–1129.

    Article  CAS  Google Scholar 

  11. K. Chiang, R. Amal and T. Tran: “Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide”, Adv. Environ. Res., Vol. 6, (2002), pp. 471–485.

    Article  CAS  Google Scholar 

  12. B. Dabrowski, A. Zaleska, M. Janczarek, J. Hupka and J. Miller: “Photo-oxidation of dissolved cyanide using TiO2 catalyst”, J. Photochem. Photobiol. A: Chem., Vol. 151, (2002), pp. 201–205.

    Article  CAS  Google Scholar 

  13. A. Bozzi, I. Guasaquillo and J. Kiwi: “Accelerated removal of cyanides from industrial effluents by supported TiO2 photo-catalysts”, Appl. Catal. B: Environ., Vol. 51, (2004), pp. 203–211.

    Article  CAS  Google Scholar 

  14. V. Augugliaro, V. Loddo, G. Marci, L. Palmisano and M. Lopez-Munoz: “Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions”, J. Catal., Vol. 166, (1997), pp. 272–283.

    Article  CAS  Google Scholar 

  15. V. Augugliaro, J. Blanco Galvez, J. Caceres Vazquez, E. Garcia Lopez, V. Loddo, M. Lopez Munoz, S. Rodrigez, S. Malato Rodrigez, G. Marci, L. Palmisano, M. Schiavello and J. Soria Ruiz: “Photocatalytic oxidation of cyanide in aqueous TiO2 suspensions irradiated by sunlight in mild and strong oxidant conditions”, Catal. Today, Vol. 54, (1999), pp. 245–253.

    Article  CAS  Google Scholar 

  16. A. Alicilar, M. Komurcu and M. Guru: “The removal of cyanides from water by catalytic air oxidation in a fixed bed reactor”, Chem. Eng. and Processing, Vol. 41, (2002), pp. 525–529.

    Article  CAS  Google Scholar 

  17. B. Basu, S. Satapathy and A.K. Bhatnagar: “Merox and related metal phtalocyanine catalyzed oxidation processes”, Catal. Rev.-Sci. Eng., Vol. 35, (1993), pp. 571–609.

    CAS  Google Scholar 

  18. L.P. Salomoson: Cyanide in Biology, B. Vennesland, E. Conn and F. Wissing (Eds.), Academic Press, New York, 1981.

    Google Scholar 

  19. St. Christoskova, M. Stojanova and D. Mehandjiev: “Entgiftung cyanidischer abwasser von galvanisier-betrieben durch oxidation mit Co-oxidsystem”, Galvanotechnik, Vol. 87, (1996), pp. 4124–4130.

    CAS  Google Scholar 

  20. St. Christoskova, M. Stojanova and M. Georgieva: “Low-temperature aqueous phase oxidation of cyanide ions with the participation of nickel oxide system”, React. Kinetics and Catal. Lett., Vol. 67, (1999), pp. 59–66.

    Article  CAS  Google Scholar 

  21. M. Stoyanova and St. Christoskova: “Aqueous phase catalytic oxidation of cyanides over iron-modified cobalt oxide system”, Appl. Catal. A: General, Vol. 274, (2004), pp. 133–138.

    Article  CAS  Google Scholar 

  22. St. Christoskova, M. Stoyanova and M. Georgieva: “Low-temperature iron-modified cobalt oxide system. Part I: Preparation and characterisation”, Appl. Catal. A: General, Vol. 208 (2001), pp. 235–242.

    Article  CAS  Google Scholar 

  23. K. Nakagava, R. Konaka and T. Nakata: “Oxidation with nickel peroxide. I. Oxidation of alcohols”, J. Org. Chem., Vol. 27, (1962), pp. 1597–1601.

    Google Scholar 

  24. S.B. Kanungo: “Physicochemical properties of MnO2−CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation”, J. Catal., Vol. 58, (1979), pp. 419–435.

    Article  CAS  Google Scholar 

  25. M. Stoyanova, St. Christoskova and M. Georgieva: “Mixed Ni−Mn-oxide systems as catalysts for complete oxidation. Part I: Preparation and characterization”, Appl. Catal. A: General, Vol. 249, (2003), pp. 285–294.

    Article  CAS  Google Scholar 

  26. M. Guilloton and F. Karst: “A spectrophotometric determination of cyanate using reaction with 2-aminobenzoic acid”, Anal. Biochem., Vol. 149, (1985), pp. 291–295.

    Article  CAS  Google Scholar 

  27. JCPDS-International Centre for Diffraction Data, #22-0556.

  28. JCPDS-International Centre for Diffraction Data, #22-0444.

  29. JCPDS-International Centre for Diffraction Data, #47-1049.

  30. JCPDS-International Centre for Diffraction Data, #10-0325.

  31. C. Milone, R. Ingoglia, G. Neri, A. Pistone and S. Galvagno: “Gold catalysts for the liquid phase oxidation of o-hydroxybenzyl alcohol”, Appl. Catal. A: General, Vol. 211, (2001), pp. 251–257.

    Article  CAS  Google Scholar 

  32. A. Pintar and J. Levec: “Catalytic oxidation of organics in aqueous solutions”, J. Catal., Vol. 135, (1992), pp. 345–357.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Stoyanova, M.K., Christoskova, S.G. Novel Ni−Fe-oxide systems for catalytic oxidation of cyanide in an aqueous phase. cent.eur.j.chem. 3, 295–310 (2005). https://doi.org/10.2478/BF02475998

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02475998

Keywords

  • Cyanide oxidation
  • iron-modified nickel oxide system
  • catalyst
  • kinetics study