Skip to main content
Log in

Diffusion times and stability exponents for nearly integrable analytic systems

  • Published:
Central European Journal of Mathematics

Abstract

For a positive integer n and R>0, we set\(B_R^n = \left\{ {x \in \mathbb{R}^n |\left\| x \right\|_\infty< R} \right\}\). Given R>1 and n≥4 we construct a sequence of analytic perturbations (H j ) of the completely integrable Hamiltonian\(h\left( r \right) = \tfrac{1}{2}r_1^2 + ...\tfrac{1}{2}r_{n - 1}^2 + r_n \) on\(\mathbb{T}^n \times B_R^n \), with unstable orbits for which we can estimate the time of drift in the action space. These functions H j are analytic on a fixed complex neighborhood V of\(\mathbb{T}^n \times B_R^n \), and setting\(\varepsilon _j : = \left\| {h - H_j } \right\|_{C^0 (V)} \) the time of drift of these orbits is smaller than (C(1/ɛ j )1/2(n-3)) for a fixed constant c>0. Our unstable orbits stay close to a doubly resonant surface, the result is therefore almost optimal since the stability exponent for such orbits is 1/2(n−2). An analogous result for Hamiltonian diffeomorphisms is also proved. Two main ingredients are used in order to deal with the analytic setting: a version of Sternberg's conjugacy theorem in a neighborhood of a normally hyperbolic manifold in a symplectic system, for which we give a complete (and seemingly new) proof; and Easton windowing method that allow us to approximately localize the wandering orbits and estimate their speed of drift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.I. Arnold: “Instability of dynamical systems with several degrees of freedom”, Dokl. Akad. Nauk SSSR, Vol. 156, (1964), pp. 9–12; Soviet Math. Dokl., Vol. 5, (1964), pp. 581–585.

    MATH  MathSciNet  Google Scholar 

  2. A. Banyaga, R. de la Llave and C.E. Wayne: “Cohomology equations near hyperbolic points and geometric versions of Sternberg linearization theorem”, J. Geom. Anal., Vol. 6, (1996), pp. 613–649.

    MATH  MathSciNet  Google Scholar 

  3. A. Banyaga, R. de la Llave and C.E. Wayne: “Cohomology equations and commutators of germs of contact diffeomorphisms”, Trans. AMS, Vol. 312, (1989), pp. 755–778.

    Article  MATH  Google Scholar 

  4. G. Benettin and G. Gallavotti: “Stability of motions near resonances in quasiintegrable Hamiltonian systems”, J. Phys. Stat., Vol. 44, (1986), pp. 293–338.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Benettin, L. Galgani and A. Giorgilli: “A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems”, Celestial Mech., Vol. 37, (1985), pp. 1–25.

    Article  MATH  MathSciNet  Google Scholar 

  6. U. Bessi: “An approach to Arnold's diffusion through the calculus of variations”, Nonlinear Anal. TMA, Vol. 26, (1996), pp. 1115–1135.

    Article  MATH  MathSciNet  Google Scholar 

  7. U. Bessi: “Arnold's example with three rotators”, Nonlinearity, Vol. 10, (1997), pp. 763–781.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Bourgain: “Diffusion for Hamiltonian perturbations of integrable systems in high dimensions”, (2003), preprint.

  9. J. Bourgain and V. Kaloshin: “Diffusion for Hamiltonian perturbations of integrable systems in high dimensions”, (2004), preprint.

  10. M. Chaperon: “Géométrie différentielle et singularités de systèmes dynamiques”, Astérisque, Vol. 138–139, (1986).

  11. M. Chaperon: “Invariant manifolds revisited”, Tr. mat. inst. Steklova, Vol. 236, (2002), Differ. Uravn. i. Din. Sist., pp. 428–446.

    MATH  MathSciNet  Google Scholar 

  12. M. Chaperon: “Stable manifolds and the Perron-Irwin method”, Erg. Th. and Dyn. Syst., Vol. 24, (2004), pp. 1359–1394.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Chaperon and F. Coudray: “Invariant manifolds, conjugacies and blow-up”, Erg. Th. and Dyn. Syst., Vol. 17, (1997), pp. 783–791.

    Article  MATH  MathSciNet  Google Scholar 

  14. B.V. Chirikov: “A universal instability of many-dimensional oscillator systems”, Phys. Reports, Vol. 52, (1979), pp. 263–379.

    Article  MathSciNet  Google Scholar 

  15. R. Douady: “Stabilité ou instabilité des points fixes elliptiques”, Ann. Sc. Éc. Norm. Sup., Vol. 21, (1988), pp. 1–46.

    MATH  MathSciNet  Google Scholar 

  16. R. Easton and R. McGehee: “Homoclinic phenomena for orbits doubly asymptotic to an invariant three-sphere”, Ind. Univ. Math. Journ., Vol. 28(2), (1979).

  17. E. Fontich and P. Mart′ in: “Arnold diffusion in perturbations of analytic integrable Hamiltonian systems”, Discrete and Continuous Dyn. Syst., Vol. 7(1), (2001), pp. 61–84.

    MATH  Google Scholar 

  18. G. Gallavotti: “Quasi-integrable mechanical systems”, In: K. Osterwalder and R. Stora (Eds.): Phénomènes criliques, systèmes aléatoires, théories de jauge, part II (Les Houches 1984), North-Holland, Amsterdam New York, 1986, pp. 539–624.

    Google Scholar 

  19. M. Herman: Notes de travail, December, 1999, manuscript.

  20. M.W. Hirsch, C.C. Pugh and M. Shub: Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583, Springer Verlag, 1977.

  21. S. Kuksin and J. Pöschel: “Nekhoroshev estimates for quasi-convex Hamiltonian systems”, Math. Z., Vol. 213, (1993), pp. 187–216.

    MathSciNet  Google Scholar 

  22. P. Lochak: “Canonical perturbation theory via simultaneous approximation”, Usp. Mat. Nauk., Vol. 47 (1992), pp. 59–140; Russian Math. Surveys, Vol. 47, (1992), pp. 57–133.

    MATH  MathSciNet  Google Scholar 

  23. P. Lochak, J.-P. Marco and D. Sauzin: “On the splitting of invariant manifolds in multi-dimensional near-integrable Hamiltonian systems” Memoirs of the Amer. Math. Soc., Vol. 163, (2003).

  24. P. Lochak and A.I. Neishtadt: “Estimates in the theorem of N. N. Nekhorocheff for systems with a quasi-convex Hamiltonian”, Chaos, Vol. 2, (1992), pp. 495–499.

    Article  MATH  MathSciNet  Google Scholar 

  25. P. Lochak, A.I. Neishtadt and L. Niederman: “Stability of nearly integrable convex Hamiltonian systems over exponentially long times”, In: Proc. 1991 Euler Institute Conf. on Dynamical Systems, Birkhaüser, Boston, 1993.

  26. J.-P. Marco: “Transition le long des chaines de tores invariants pour les systèmes hamiltoniens analytiques”, Ann. Inst. H. Poincaré, Vol. 64(2), (1996), pp. 205–252.

    MATH  MathSciNet  Google Scholar 

  27. J.-P. Marco: “Uniform lower bounds of the splitting for analytic symplectic systems”, Ann. Inst. Fourier, submitted to.

  28. J.-P. Marco, and D. Sauzin: “Stability and instability for Gevrey quasi-convex nearintegrable Hamiltonian systems”, Publ. Math. I.H.E.S., Vol. 96, (2003), pp. 77.

    Google Scholar 

  29. N.N. Nekhoroshev: “An exponential estimate of the time of stability of nearly integrable Hamiltonian systems”, Usp. Mal. Nauk., Vol. 32, (1977), pp. 5–66; Russian Math. Surveys, Vol. 32, (1977), pp. 1–65.

    MATH  Google Scholar 

  30. J. Pöschel: “Nekhoroshev estimates for quasi-convex Hamiltonian systems”, Math. Z., Vol. 213, (1993), pp. 187–216.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Sternberg: “Local contractions and a theorem of Poincaré”, Amer. J. Math., Vol. 79, (1957), pp. 809–824.

    Article  MATH  MathSciNet  Google Scholar 

  32. S. Sternberg: “On the structure of local homeomorphisms II”, Amer. J. Math., Vol. 80, (1958), pp. 623–631.

    Article  MATH  MathSciNet  Google Scholar 

  33. S. Sternberg: “On the structure of local homeomorphisms III”, Amer. J. Math., Vol. 81, (1959), pp. 578–604.

    Article  MATH  MathSciNet  Google Scholar 

  34. S. Sternberg: “Infinite Lie groups and the formal aspects of dynamical systems”, J. Math. Mech., Vol. 10, (1961), pp. 451–474.

    MATH  MathSciNet  Google Scholar 

  35. D. V. Treshchev: “Evolution of slow variables in near-integrable Hamiltonian systems”, Progress in nonlinear science, Vol. 1, (2001), pp. 166–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Lochak, P., Marco, JP. Diffusion times and stability exponents for nearly integrable analytic systems. centr.eur.j.math. 3, 342–397 (2005). https://doi.org/10.2478/BF02475913

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02475913

Keywords

MSC (2000)

Navigation