Skip to main content
Log in

The rate of convergence for spectra of GUE and LUE matrix ensembles

  • Published:
Central European Journal of Mathematics

Abstract

We obtain optimal bounds of order O(n −1) for the rate of convergence to the semicircle law and to the Marchenko-Pastur law for the expected spectral distribution functions of random matrices from the GUE and LUE, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Askey and S. Wainger: “Mean convergence of expansion in Laguerre and Hermitean series”, American Journal of Mathematics, Vol. 87, (1965), pp. 695–707.

    Article  MATH  MathSciNet  Google Scholar 

  2. Z.D. Bai: “Convergence rate of expected spectral distributions of large random matrices. Part I. Wigner matrices”, Ann. Probab., Vol. 21, (1993), pp. 625–648.

    MATH  MathSciNet  Google Scholar 

  3. Z.D. Bai: “Convergence rate of expected spectral distributions of large random matrices. II. Sample covariance matrices”, Ann. Probab., Vol. 21, (1993), pp. 649–672.

    MATH  MathSciNet  Google Scholar 

  4. Z.D. Bai: “Methodologies in spectral analysis of large dimensional random matrices: a review”, Statistica Sinica, Vol. 9, (1999), pp. 611–661.

    MATH  MathSciNet  Google Scholar 

  5. Z.D. Bai, B. Miao and J. Tsay: “Convergence rates of the spectral distributions of large Wigner matrices”, Int. Math. J., Vol. 1 (2002), pp. 65–90.

    MATH  MathSciNet  Google Scholar 

  6. Z.D. Bai, B. Miao and J.-F. Yao: “Convergence rate of spectral distributions of large sample covariance matrices”, SIAM J. Matrix Anal. Appl., Vol. 25, (2003), pp. 105–127.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Deift: Orthogonal Polynomials and Random Matrices: A Rieman-Hilbert Approach, Courant Lectures Notes, Vol. 3, Amer. Math. Soc., 2000.

  8. P. Deift, T. Kriecherbauer, K.D.T.-R. McLaughlin, S. Venakides and X. Zhou: “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure and Applied Math., Vol. LII, (1999), pp. 1491–1552.

    Article  MathSciNet  Google Scholar 

  9. N.M. Ercolani and K.D.T.-R. McLaughlin: “Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to grafical enumeration”, Int. Math. Res. Not., Vol. 14, (2003), pp. 755–820.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Erdelyi: “Asymptotic solutions of differencial equations with transition points or singularities”, J. Math. Phys., Vol. 1, (1960), pp. 16–26.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Forrester: Log-gases and Random Matrices, Book Manuscript: www.ms.unimelb.edu.au/∼matpjf/matpjf.html

  12. V.L. Girko: “Asymptotics distribution of the spectrum of random matrices”, Russian Math. Surveys., Vol. 44, (1989), pp. 3–36.

    Article  MATH  MathSciNet  Google Scholar 

  13. V.L. Girko: “Convergence rate of the expected spectral functions of symmetric random matrices equals to O(n −1/2)”, Random Oper. and Stoch. Equ., Vol. 6, (1998), pp. 359–406.

    Article  MATH  MathSciNet  Google Scholar 

  14. V.L. Girko: “Extended proof of the statement: Convergence rate of the expected spectral functions of symmetric random matrices Ξ n is equal to O(n −1/2) and the method of critical steepest descent”, Random Oper. and Stoch. Equ., Vol. 10, (2002), pp. 253–300.

    MATH  MathSciNet  Google Scholar 

  15. N.R. Goodman: “Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)”, Ann. Math. Statistics, Vol. 34, (1963), pp. 152–177.

    MATH  Google Scholar 

  16. F. Götze and A.N. Tikhomirov: “Rate of convergence to the semi-circular law for the Gaussian Unitary Ensemble”, Theory Probab. Appl., Vol. 47, (2002), pp. 381–388.

    MATH  Google Scholar 

  17. F. Götze and A.N. Tikhomirov: “Rate of convergence to the semi-circular law”, Probab. Theory Relat. Fields, Vol. 127, (2003), pp. 228–276.

    Article  MATH  Google Scholar 

  18. F. Götze and A.N. Tikhomirov: “Rate of Convergence in Probability to the Marchenko-Pastur Law”, Bernoulli, Vol. 10(1), (2004), 1–46.

    Article  MATH  MathSciNet  Google Scholar 

  19. F. Götze and A.N. Tikhomirov: Limit theorems for spectra of random matrices with martingale structure, Bielefeld University, Preprint 03-018 2003, www.mathemathik.uni-bielefeld.de/fgweb/preserv.html

  20. I.S. Gradstein and I.M. Ryzhik: Table of Integrals, Series, and Products, Academic Press, Inc. New York, 1994.

    Google Scholar 

  21. J. Gustavsson: Gaussian fluctuations of eigenvalues in the GUE, arXiv: math. PR/0401076 v1, 1–27, (2004).

  22. U. Haagerup and S. Thorbjørnsen: Random matrices with complex Gaussian entries, Expo. Math., Vol. 21, (2003), pp. 293–337.

    MATH  MathSciNet  Google Scholar 

  23. R. Janik and M. Nowak: “Wishart and anti-Wishart random matrices”, J. of Phys. A: Math. Gen., Vol. 36, (2003), pp. 3629–3637.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Ledoux: Differential operators and spectral distribution functions of invariant ensembles from the classical orthogonal polynomials. The continuous case, Preprint, University of Toulouse, 2002, pp. 1–31.

  25. V.M. Marchenko and L.A. Pastur: “The eigenvalue distribution in some ensembles of random matrices”, Math. USSR Sbornik, Vol. 1, (1967), pp. 457–483.

    Article  MATH  Google Scholar 

  26. M.L. Mehta: Random matrices, 2nd ed., Academic Press, San Diego, 1991.

    MATH  Google Scholar 

  27. B. Muckenhaupt: “Mean convergence of Hermitian and Laguerre series I, II”, Trans. American. Math. Soc., Vol. 147, (1970), pp. 419–460.

    Article  Google Scholar 

  28. G. Szegö: Orthogonal Polynomials, American Math. Soc., New York, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the DFG-Forschergruppe FOR 399/1. Partially supported by INTAS grant N 03-51-5018, by RFBR grant N 02-01-00233, and by RFBR-DFG grant N 04-01-04000.

About this article

Cite this article

Götze, F., Tikhomirov, A. The rate of convergence for spectra of GUE and LUE matrix ensembles. centr.eur.j.math. 3, 666–704 (2005). https://doi.org/10.2478/BF02475626

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02475626

Keywords

MSC (2000)

Navigation